

Group discussion SW06

Environmental chemistry and biology

HSLU, Semester 1

Matteo Frongillo

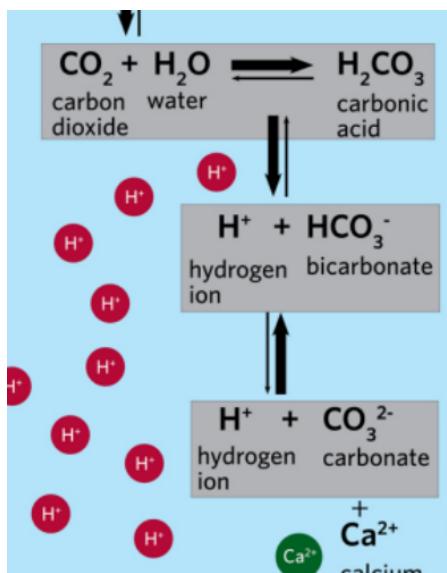
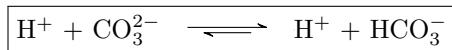
October 23, 2024

Contents

1	Partecipant	2
2	Case of study: The Chemical Impact of Ocean Pollutants on Marine Ecosystems	2
2.1	Question 1	2
2.2	Question 2	2
2.3	Question 3	3
2.4	Question 4	3

1 Participant

1. Matteo (Coach)
2. Jonathan
3. Brenden
4. Martin
5. Ramadhan
6. Felix
7. Kron
8. Folagbade



2 Case of study: The Chemical Impact of Ocean Pollutants on Marine Ecosystems

2.1 Question 1

How does increasing CO₂ concentration affect the oceans pH and marine life?

It forms the carbonic acid which breaks down to hydrogen ions and bicarbonate (HCO₃⁻), which reduces the pH of the ocean.

Algae consumes CO₂ due to the photosynthesis.

2.2 Question 2

How does the structure of benzene contribute to its stability and persistence in the environment?

Benzene has double and single bonds. This property gives to the chemical a high stability.

Furthermore, having a high volatility, benzene remains in the atmosphere.

2.3 Question 3

How does this buffer system limit changes in pH, and why is it becoming less effective?

This system contains many CO_2 molecules that react with water, creating carbonic acid (H_2CO_3). Thus, the carbonic acid consumes carbonate (CO_3^{2-}) faster than it creates it.

Increased CO_2 in the environment leads to more carbon:

2.4 Question 4

What chemical and engineering solutions could you propose to mitigate both CO_2 and benzene pollution? – Name at least 3.

- Reduction in the use of CO_2 -emitting products;
- Implementation of CO_2 capture devices in the environment and oceans;
- Reduction in the use of pollutants in product manufacturing;
- Bio-filtration with algae;
- Mitigation of CO_2 emissions through the creation of new renewable energy plants;
- Increase in the use of solar energy;
- Drastic reduction of deforestation and an increase in the number of trees planted;
- Preservation of natural sites.