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Part I

Logic

1 Propositional logic
Propositional logic is a branch of mathematics that deals with propositions and logical operations.

1.1 Logical connectives

A B ¬B A ∧B A ∨B A =⇒ B A ⇔ B

T T F T T T T
T F T F T F F
F T F F T T F
F F T F F T T

1.1.1 Logical conjunction ∧

Given two statements P and Q, P ∧Q is true if both P and Q are true.

Let P = (x > 0) and Q = (y > 0), then:

P ∧Q = (x > 0 ∧ y > 0)

1.1.2 Logical disjunction ∨

Given two statements P and Q, P ∨Q is true if at least one of P or Q is true.

Let P = (x = 0) and Q = (y 6= 0), then:

P ∨Q = (x = 0 ∨ y 6= 0)

1.1.3 Logical negation ¬

The negation of a statement P , denoted as ¬P , is true if P is false, and false if P is true.

Let P = (x ≥ 5), then:

¬P = (x < 5)

1.1.4 Implication =⇒

The symbol =⇒ indicates that if statement P is true, then statement Q must also be true (i.e., P implies Q).
Warning: It does not require that Q implies P .

P = (x = 1) =⇒ Q = (x ∈ N)

1.1.5 Inference ⇐=

The symbol ⇐ means that a conclusion or result implies the truth of an earlier statement.
If Q is true, then P must be true.

Q = (x > 0) ⇐= P = (x ∈ R+)
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1.1.6 If and only if ⇐⇒

The symbol ⇐⇒ indicates that two statements P and Q are logically equivalent, meaning P is true if and only
if Q is true.

P = (x ∈ N, x 6= 0) ⇐⇒ Q = (x ∈ N∗)

Part II

Set Theory

2 The set theory
2.1 Logical symbols
2.1.1 Definition

Braces and the definition symbol “:=” are used to define a set giving all its elements:

A := {a, b, c, d, e}

2.1.2 Equal

In this case, the equal symbol means that the set A is equal to the set B:

A = B

2.1.3 Belongs to

The symbols ∈ and 3 describe an element which is part of the set:

a ∈ A ⇐⇒ A 3 a

2.1.4 Does not belong to

The symbols /∈ mean that an element does not belong to the set:

f /∈ A

2.1.5 Inclusion and contains

The symbols ⊂ and ⊃ mean that a set has another set included in its set:

N ⊂ Z ⇐⇒ Z ⊃ N

2.1.6 For all/any

The symbol ∀ means that we are considering any type of element:

∀x ∈ R, x > 0

In this case, we’ve defined a new set.
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2.2 Numerical sets
• N := Natural numbers (including 0);

• Z := Integer numbers;

• Q := Rational numbers;

• R := Real numbers := Q ∪ {irrational numbers} .

Notation: The “∗” symbol means that the set does not include 0.

2.2.1 Inclusion of sets

N ⊂ Z ⊂ Q ⊂ R ⊂ C

B := {π, 1,−1, 0} ;
C := {π, 1} ;
D := {π} .

Then we write some examples: π ∈ B, D ⊂ B, C ⊂ B, B 6⊂ C, 0 ∈ B, 0 /∈ C.

3 Abstract algebra
3.1 Universe symbol
The symbol U := Universe describes a big set which contains all sets involved in our discussions (not always).

3.2 Venn diagram
3.2.1 Union A ∪B

If A and B are sets, then their union is:

A ∪B = {∀x ∈ U | x ∈ A ∨ x ∈ B}

A B

A ∪B

U
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3.2.2 Intersection A ∩B

If A and B are sets, then their intersection is:

A ∩B = {∀x ∈ U | x ∈ A ∧ x ∈ B}

A B

A ∩ B̄ Ā ∩BA ∩B

U

3.2.3 Complement Ā

If A is a set, its complement is:

Ā = {∀x ∈ U | x /∈ A}

Ā A

U
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3.2.4 Difference between sets \

If A and B are sets, then their difference is:

A \B = {∀x ∈ U | x ∈ A, x /∈ B}

A B

A \B B \AA ∩B

U

3.2.5 Symmetrical difference 4

If A and B are sets, then their symmetrical difference is:

A4B = (A \B) ∪ (B \A)

A B

A \B B \AA ∩B

U
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3.2.6 Disjoined sets (Empty sets) ∅

∅ := the set containing zero elements:

A ∩B = ∅

A B

U
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Part III

Algebra

4 Intervals in the real line
Intervals describe what happens between two or more elements.

4.1 Examples
4.1.1 Interval sets

We have 4 cases:

• (a, b) = {∀x ∈ R | a < x < b};

• [a, b) = {∀x ∈ R | a ≤ x < b};

• (a, b] = {∀x ∈ R | a < x ≤ b};

• [a, b] = {∀x ∈ R | a ≤ x ≤ b}.

Notation: a and b are often called the “end points” of the interval;

4.1.2 Graphical examples

∀x ∈ R, x ∈ [a, b]

a b

5 The extended line
In the real line R we add ±∞.

Real line: (−∞,+∞) = R

Extended real line: [−∞,+∞] = R

−π −e −
√
2 −1 −1

2

0 1

2

1
√
2 e π−∞ +∞

Remark: ±∞ /∈ R

5.1 Properties

∀x ∈ R | ∞ > x | −∞ < 0

5.2 Operation in the extended line

If a, b ∈ R, then a+ b, a− b, a · b, a

b
(with b 6= 0) stay the same
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5.2.1 Additions

Let ∀a ∈ R:

• a+∞ := ∞;

• a−∞ := −∞;

• +∞+∞ := +∞;

• −∞−∞ := −∞;

• +∞−∞ := undefined.

5.2.2 Moltiplications

Let ∀a ∈ R:

• +∞ ·+∞ := +∞;

• −∞ ·+∞ := −∞;

• −∞ · (−∞) := ∞;

• a · ∞ :=


a > 0 +∞
a < 0 −∞
a = 0 undefined

• a · (−∞) :=


a > 0 −∞
a < 0 +∞
a = 0 undefined

• a

+∞
=

a

−∞
:= 0;

• +∞
a

:=


a > 0 +∞
a < 0 −∞
a = 0 +∞

• −∞
a

:=


a > 0 −∞
a < 0 +∞
a = 0 −∞

• ∞
∞

:= undefined.

6 Intervals including ±∞
Intervals describe what happens between two or more elements, including ±∞.

6.1 Examples
6.1.1 Interval sets

Let a ∈ R, then:

• (−∞, a) = {∀x ∈ R | x < a};

• (a,+∞) = {∀x ∈ R | x > a};

• (−∞, a] = {∀x ∈ R | x ≤ a};

• [a,+∞] = {∀x ∈ R | x ≥ a};

• (−∞,+∞) = R;

• [−∞,+∞] = R.
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6.1.2 Graphical examples

∀x ∈ R, x ∈ [a, b] ∪ ]c,+∞[

a b c

Notation: The union of two or more intervals where x ∈ R is denoted by the symbol ∪.

7 The absolute value function
The absolute value is an operator that returns the positive value of a number, regardless of its original sign.

Let x ∈ R, then:

|x| =

{
x if x ≥ 0

x if −x < 0

7.1 Graph of absolute value functions
Let’s plot the function y = |x|:

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3 3.5

−1

−0.5

0.5

1

1.5

2

2.5

3

R2

x

y

7.2 Properties
Let a, b ∈ R, then:

• |a · b| = |a| · |b|;

•
∣∣∣a
b

∣∣∣ = |a|
|b|

for b 6= 0;

• |a± b| 6= |a| ± |b|.
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7.3 Triangular inequalities
Let a, b ∈ R, then:

|a|+|b| ≥ |a+b|
|a|−|b| ≤ |a−b|

8 Concept of functions
Let’s take any two sets A {a, b, c, d, e, f, g} and B {a1, b1, c1, d1, e1, f1, g1}.

f : A =⇒ B

a 7−→ f(a)

A function is a relation between the sets A and B, according to which we associate to each element of A one
and only one element of B:

∀x ∈ A ∃! y ∈ B | (x, y) ∈ f

f : A B

•g

•f

•e
•d

•c
•b
•a

• g1
• f1
• e1
• d1
• c1
• b1
• a1

Notation: f(a) = b1, f(b) = a1, f(c) = c1, f(d) = d1, ...

Each point in set A is associated with one element of B. However, it is possible for more than two elements of
A to point to the same element of B.

The set A is called domain of f . The set B is called the codomain of f .

8.1 Image (Range)
Let f : X =⇒ Y be a function. The image of f is defined as:

Im(f)= {y ∈ Y | y = f(x), x ∈ X}

Easily, the image is the set containing all the elements of the set B associated with the elements of the set A.
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9 Linear function
9.1 Cartesian diagram

x-axis

y-axis

x=3

y=3
P(3,3)

0

(y,q) θ

9.2 Straight line
Let A and B be any two distinct points, then there is one and only one line passing through A and B.

9.3 Slope-intercept equation
Let m, q ∈ R, then

y = mx+ q

• m: slope;

• q: vertical intercept.

9.3.1 Slope

The slope of a line can be calculated with the equation

m =
yB − yA
xB − xA

=
∆y

∆x
= tan (θ)

We have three different slope outcomes:

• m > 0, the line is increasing;

• m = 0, the line is stable;

• m < 0, the line is decreasing.

Warning: This works only if xB 6= xA.

9.3.2 Drawing

A

B

∆x

∆y
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9.4 Vertical lines
The more the value of m increases, the closer the line will get to the vertical, without ever reaching it.

Let c ∈ R, then x = c.

Vertical lines cannot be written as a function.

10 Equation of a line
Let m,xA, yA ∈ R and A(xA, yA), then

y − yA = m(x− xA)

e.g.: Find the line with m = −1 and A(1, 0).

y − 0 = −1(x− 1) =⇒ y = −x+ 1

Points: A(1, 0); B(0, 1)

−3 −2 −1 1 2 3

−2

2

A

B

x

y

10.1 General equation in a cartesian diagram

ax+ by + c = 0

Remark:

• All the lines can be described with this kind of equation;

• When b = 0, a 6= 0, then ax = −c =⇒ x =
−c

a
∈ R;

• When b 6= 0, then y = −a

b
x− c

b
, where m = −a

b
and q = −c

b
.
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11 Increasing and decreasing functions
Let f : [a, b] −→ R

Notation: if your replace [a, b] with R, you obtain the definition in the whote R.

11.1 Increasing functions
• f is increasing if ∀x1, x2 ∈ [a, b] | x2 > x1, then f(x2) ≥ f(x1);

• f is strictly increasing if ∀x1, x2 ∈ [a, b] | x2 > x1, then f(x2) > f(x1).

11.2 Decreasing functions
• f is decreasing if ∀x1, x2 ∈ [a, b] | x2 > x1, then f(x2) ≤ f(x1);

• f is strictly decreasing if ∀x1, x2 ∈ [a, b] | x2 > x1, then f(x2) < f(x1).

12 Inverse function
Let’s take any two sets A and B.

A function f : A =⇒ B is invertible if there exists another function f−1 : B =⇒ A, called the inverse
function, such that:

∀x ∈ A, f−1(f(x)) = x

∀y ∈ B, f(f−1(y)) = y

Warning: A function is invertible if and only if it is bijective.

12.1 Facts about inverse functions
1)
Let f : D =⇒ R

f is invertible in D when:

• f is strictly increasing;

• f is strictly decreasing.

2)
Let f : D =⇒ R

f is invertible when f−1 : Im(f) =⇒ D.
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13 Expressions and factorization
13.1 Expressions, terms and factors
13.1.1 Expressions

An expression is any formula containing numbers, variables, operations, and brackets.

y = ax2 + bx · c

13.2 Terms
A term is any part of the expression separated by “+” or “−”.

y = ax2︸︷︷︸
term

+ bx · c︸ ︷︷ ︸
term

13.2.1 Factors

Each term can be split into a product of factors.

x · y · (a− b) · 24 = x · y · (a− b) · 2 · 2 · 2 · 3

Notice: the process of splitting a term into several factors is called “factorization”.
The goal of a factorization is to factorize an expression as much as possible.

13.2.2 Common factor

Any expression made of terms is composed of several factors.

x2 + x3 + x = x(x+ x2 + 1), ∀x ∈ R

13.3 Notable producs
• (a+ b)2 = a2 + 2ab+ b2 (square of a binomial);

• (a− b)2 = a2 − 2ab+ b2 (square of a binomial);

• (a− b)(a+ b) = a2 − b2 (difference of squares);

• (a+ b)(a2 − ab+ b2) = a3 + b3 (sum of cubes);

• (a− b)(a2 + ab+ b2) = a3 − b3 (difference of cubes).

Remark: notable products are useful to factorize expressions when we don’t know a common factor.
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14 Polynomial function
Let n ∈ N∗, then a polynomial is the sum or difference of n-monomials.

15 Classification of polynomials
Polynomials can be classified using two criteria:

1. the number of terms;

2. the degree of the polynomial.

Number of Terms Name Example Degree
One Monomial ax2 1
Two Binomial ax2 − bx 2

Three Trinomial ax2 − bx+ c 3
Four or more Polynomial anx

n − a1x
n−1 + a2x

n−2 · · · a0 n-degree

Remark: The degree of a polynomial is the largest exponent of its monomials.

16 Symmetrical functions
Let y = kxn, then we plot:

16.1 n odd

f(−x) = −f(x), ∀x ∈ R

16.1.1 Graph examples

−2 −1 1 2

−1

−0.5

0.5

1

x

y

k > 0

−2 −1 1 2

−1

−0.5

0.5

1

x

y

k < 0
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16.2 n even

f(−x) = f(x), ∀x ∈ R

16.2.1 Graph examples

−2 −1 1 2

0.2

0.4

0.6

0.8

1

x

y

k > 0
Concave up

−2 −1 1 2

−1

−0.8

−0.6

−0.4

−0.2

x
y

k < 0
Concave down

Definition:

• a function y = f(x) is called odd if it is symmetric with respect to the origin;

• a function y = f(x) is called even if it is symmetric with respect to the y-axis.

16.3 General case
Let y = p(x), where p(x) is any polynomial with real coefficients:

p(x) = an · xn + an−1 · xn−1 + an−2 · xn−2 + ...+ a2 · x2 + a1 · x1 + a0

where:

• n ∈ N;

• n = deg(p(x));

• an = leading coefficient.

p(x) =
n∑

i=0

ai · xi

16.4 Symmetry of a polynomial
Let y = p(x) be a polynomial function, then:

1)
y = p(x) is odd iff all the degrees of all the terms of p(x) are odd;

2)
y = p(x) is even iff all the degrees of all the terms of p(x) are even;

3)
y = p(x) has mixed degrees, p(x) is neither odd nor even.
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17 Intersection with axis
17.1 Vertical intersection
Let y = f(x) be any function, then we solve for y:{

x = 0

y = f(0)

17.2 Zeros of a function
Let y = f(x) be any function, then we solve for x:{

y = 0

0 = f(x)

17.3 Graph example

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

−3

−2

−1

1

2

3

4

5

6

x

y

f(x) = x4 − 5x2 + 4
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18 Dominant elements in a function approaching ±∞
As x approaches ±∞, the term with the highest degree in a polynomial function dominates the behavior of the
function.

p(x) has, as a dominant, the element an with the highest degree xn

18.1 Order of dominance
18.1.1 Approaching to +∞

Let n ∈ N, m ∈ N, 2 < n < m, then:

ln(x) < x < xn < xm < nx < mx < xx

In these cases, we always have x =⇒ +∞ =⇒ p(x) =⇒ +∞

18.1.2 Approaching to -∞

Let λ > 2 and odd, k > 2 and even.

xλ < −x2 < x1 < 0
−xk < −x2 < x1 < 0

Functions like xλ (with λ odd) and −xk (with k even) both approach −∞, but at different rates.

18.1.3 Dominance in rational functions

When the dominant element is at the numerator:

lim
x→∞

xn

xn−1
= ∞

When the dominant element is at the denominator:

lim
x→∞

xn−1

xn
= 0

When we have the same degree either in the numerator and in the denominator:

lim
x→∞

axn

bxn
=

a

b

Definition: horizontal asymptote appears when x approaches to ∞, which implies that y approaches to a
number A different from ±∞
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19 Exponential and logarithm functions
The relationship between exponentials and logarithms is based on the following formula:

aloga(x) = x ⇐⇒ loga(a
x) = x

19.1 Exponentials
19.1.1 General equation

Let α ∈ R∗
+, x ∈ R, and a > 1, then:

y = α · ax

19.1.2 Euler’s number

Euler’s number is defined by the limit:

e = lim
n→∞

(
1 +

1

n

)n

≈ 2.718 · · ·

Alternatively, it can be expressed as:

e =

∞∑
n=0

1

n!

19.2 Logarithms
19.2.1 Natural logarithm

The inverse function of the Euler’s exponential function:

f(x) = ex ⇐⇒ h(x) = ln(x)

Remark: the domain of ln(x) is Dn : ∀x ∈ R∗
+

19.2.2 Logarithms with arbitrary bases

The inverse function of any arbitrary exponential function:

f(x) = nx ⇐⇒ h(x) = logn(x)

Alternatively, it can be expressed as:

loga(x) =
ln(x)

ln(a)

19.2.3 Common logarithm

The common logarithm uses base 10:

log10(x) =
ln(x)

ln(10)
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19.3 Exponential growth

N(t) = N0 · ekt

20 Composite functions
Let y = f(x) and z = g(y) be two functions, then:

z = g(f(x))

20.1 Examples
1)
Let f(x) = x2 + 4x and g(y) = y2 + cos(y) be two functions, then:

g(f(x)) =
(
x2 + 4x

)2
+ cos(x2 + 4x)

2)
Let f(x) = x3, h(x) = arctan(x) and g(x) = ln(x) be functions, then:

g(h(f(x))) = ln(arctan(x3))
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Part IV

Trigonometry

21 Trigonometry
21.1 Conversion table of degrees and radians

Angles (in Degrees) 0◦ 30◦ 45◦ 60◦ 90◦ 180◦ 270◦ 360◦

Angles (in Radians) 0
c

π/6
c

π/4
c

π/3
c

π/2
c

π
c

3π/2
c

2π
c

sin(θ) 0 1/2
√
2/2

√
3/2 1 0 −1 0

cos(θ) 1
√
3/2

√
2/2 1/2 0 −1 0 1

tan(θ) 0
√
3/3 1

√
3 ∞ 0 ∞ 0

Remark:

cos(2π + θ) = cos(θ) | sin(2π + θ) = sin(θ)

Remark: Let ∀k ∈ Z, ∀θ ∈ R, then:

cos(θ + 2πk) = cos(θ)

21.2 Trigonometric functions in the unit circle

x

y

O

P (x, y)

P ′(x, y′)

θ

cos θ

sin θ

1

1

-1

-1

III

III IV

H

Remark: the circle has center in the origin O, radius = 1 and function x2 + y2 = 1
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Trigonometric functions can be extended to angles beyond 0 and 90◦ using the unit circle. For an angle θ in
the unit circle:

sin θ := y | cos θ := x | tan θ :=
y

x

21.2.1 Property 1 – Domain and range

Because we are inside a circle of radius 1:

• −1 ≤ cos(θ) ≤ 1;

• −1 ≤ sin(θ) ≤ 1.

21.2.2 Property 2 – Trigonometric identity

Because we have a 90◦ angle, we can use Pythagoras:

#     »

OH 2 +
#     »

PH 2 =
#    »

OP 2

Let ∀θ ∈ R, then we can compute the following trigonometric identity:

sin2(θ) + cos2(θ) = 1

21.3 Tangent
A tangent of an angle is exactly the slope of a line:

m =
∆y

∆x
= tan(θ) =

sin(θ)

cos(θ)

Remark: the tangent is not defined when the angle is π

2
or 3π

2
, that is when we have a vertical line.

21.4 Domain of trigonometric functions

y = cos(x), xc ∈ R
y = sin(x), xc ∈ R

y = tan(x), xc ∈ R \
{π

2
+ kπ | k ∈ Z

}
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21.5 Inverse trigonometric functions
Warning: in order to be invertible, a function should be either always strictly increasing or always strictly
decreasing.

21.5.1 Arccosine

The domain of the arccosine is ∀x ∈ [−1, 1] and the range is ∀y ∈ [π, 0]

−1 1 2 3

−1

1

2

3

x

y
y = cos(x)

y = x

y = arccos(x)

21.5.2 Arcsine

The domain of the arcsine is ∀x ∈ [−1, 1] and the range is ∀y ∈
[
−π

2
,
π

2

]

−2 −1.5 −1 −0.5 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0.5

1

1.5

2

x

y

y = sin(x)
y = x

y = arcsin(x)

21.5.3 Arctan

The domain is ∀x ∈ R and the range is ∀y ∈
[
−π

2
,
π

2

]

−6 −4 −2 2 4 6

−4

−2

2

4

x

y

y = tan(x)
y = x

y = arctan(x)
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21.6 Harmonic oscillation
Let A,B > 0, then the function is oscillating harmonically with t around D:

y = D +A · sin(Bt+ φ)

distance or time

displacement
A

−A

Amplitude

crest

trough

wavelength λ wavelength λ
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Part V

Limits

22 Concept of limit of a real function
22.1 Definition
Let f : D → R be a function and c a point, the limit L = lim

x→c
f(x) with x tending to c exists only if in a given

ϵ > 0 arbitrarily small, there exists another δ > 0 such that:

0 < |x− c| < δ =⇒ |f(x)− L| < ϵ

22.2 Graphic interpretation

y

x

L

L+ ϵ

L− ϵ

c−δ c+δ

23 Limit value at a finite point
The notion of the “limit of f(x) as x approaches a (finite) point a ∈ R” is only meaningful if the point a can be
approximated by points from the domain of definition of f . We can precisely formulate this concept with the
notion of an “accumulation point”.

Definition
Given a set A ⊂ R and a real number a ∈ R, the real number a is called an accumulation point of the set A if
every open interval of the form (a− δ, a+ δ) with δ > 0 contains infinitely many points of A.

In the above definition, it is not required that a lies in A. Often, we will consider functions whose domains are
unions of intervals of the form:

(b, a) ∪ (a, c)

For example, consider the function defined by f(x) = 1
x , defined on (−∞, 0) ∪ (0,∞). The point 0 is an

accumulation point of the domain of definition of 1
x .

Definition
Given a real function f , an accumulation point x0 of Df , and L ∈ R = R ∪ {±∞}, we say that the function f
has the limit L as x → x0 if f(x) gets arbitrarily close to L, provided x is sufficiently close to (but never equal
to) x0.
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23.1 One-sided limits
Often, one considers limits where x approaches x0 from only one direction, either from the right or from the
left. In these cases, we refer to a right-sided or left-sided limit and use the following notations:

lim
x→x+

0

f(x) or lim
x→x0,x>x0

f(x) or lim
x→x0

f(x)

for a right-sided limit, and:

lim
x→x−

0

f(x) or lim
x→x0,x<x0

f(x) or lim
x→x0

f(x)

for a left-sided limit.

lim
x→a

can indicate a limit as x approaches an arbitrary point (e.g., a = x0 for x0 ∈ R), as well as a one-sided
limit (a = x+

0 or a = x−
0 for x0 ∈ R), or a limit at infinity (a = ±∞).

23.1.1 Graph example

x

f(x)

1

0

24 Continuity of a function

Definition Continuity of a real function
Given a real function f : D → C, the function is continuous at the point x = c where c ∈ D if:

lim
x→c

f(x) = f(c)

and therefore, if the limit exists and is equal to the value of the function at that point.

In other words, the function is continuous at the point if the limit exists (from both the left and right, coinciding)
and the value of the function at that point is equivalent to the value of the limit.

x

f ′(|x|)
y

1

-1

0
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24.1 Continuity in short
• A function is said to be continuous at a point if the limit at that point exists and is equal to the value of

the function at that point;

• A function is said to be continuous on a subinterval of the domain if it is continuous at all points in that
subinterval;

• A function is said to be continuous if it is continuous at all points in its interval.
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Part VI

Derivatives
Assume that y = f(x) is a differentiable function in some interval (a, b), then we have defined the derivative
function.

25 Derivative notations

Type of derivative First derivative Second derivative n-th derivative

Lagrange’s notation f ′(x) f ′′(x) f (n)(x)

Leibniz’s notation d

dx
f(x)

d2

dx2
f(x)

dn

dxn
f(x)

Leibniz’s notation
in a point a

d

dx
[f(x)] | x=a

d2

dx2
[f(x)] | x=a

dn

dxn
[f(x)] | x=a

Newton’s notation ḟ f̈
(n)

f

26 Definition of derivative
The derivative of a real function f(x) is defined as:

f ′(x) = lim
∆x→0±

f(x+∆x)− f(x)

∆x

if the limit exists.

Definition: f ′(a), if it exists, is called derivative of f(x) at x = a.
It corresponds to the slope of the tangent line at x = a to the function y = f(x)

26.1 Simplified definition (Exponentiation rule)
Let ∀α ∈ R, then:

f(x) = xα ⇒ f ′(x) = α · xα−1

26.2 Existence of the derivative
The derivative exists if and only if:

lim
∆x→0+

f(x+∆x)− f(x)

∆x
= lim

∆x→0−

f(x+∆x)− f(x)

∆x

Remark: If a function is differentiable, then it is continuous:

Differentiable =⇒ Continuous
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27 Geometric meaning of the derivative
y

x

∆x

∆y

A

B
The secant of a function f(x) between a point A and B
is given by:

∆y

∆x
=

f(B)− f(A)

B −A

The closer we bring A and B, the smaller ∆x becomes.
As ∆x decreases, the slope of the secant becomes more
representative of the rate of change of f in the interval
[A;B].

When the ∆x of the slope becomes infinitesimally small,
we obtain the exact slope at a point (instantaneous).
This slope is represented by the tangent line:

lim
∆x→0

∆y

∆x

y

x

A

y

x

∆x

∆y

a

The derivative of a function f(x) is therefore another
function, f ′(x), which represents the rate of change of
f(x) at every point. In other words, f ′(x) represents the
slope of the tangent at each x of f(x). This is precisely
represented by the definition of the derivative, which is
the slope ∆y

∆x calculated with the limit of ∆x → 0.

27.1 Equation of the tangent line
When f ′(x) is defined, p = (x, f(x)), and p ∈ tangent line, then:

y − f(a) = f ′(a) · (x− a)

28 Bernoulli – de l’Hôpital Theorem
Bernoulli – de l’Hôpital theorem is applicable only if the function results in an indeterminate form.

28.1 The 7 indeterminate forms
The seven indeterminate forms are:

0
0 ,

∞
∞ , 0 · ∞, ∞−∞, 00, ∞0, 1∞
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28.2 Statement of the theorem
Let us consider two real functions f(x) and g(x) that are differentiable in a neighborhood of x0 ∈ R (not
necessarily at x0).

If lim
x→x0

f(x)

g(x)
results in an indeterminate form, then:

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)

if the limit exists.

29 Derivation rules
29.1 Normal cases
Let y = f(x) and y = g(x) be two derivable functions, then:

29.1.1 Linearity

Let c ∈ R, then:

d

dx
[c · f(x)] = c · d

dx
[f(x)]

29.1.2 Sum and subtraction

f ′(x)± g′(x) =
d

dx
[f(x)± g(x)]

29.1.3 Multiplication

d

dx
[f(x) · g(x)] = f ′(x) · g(x) + f(x) · g′(x)

29.1.4 Quotient

d

dx

[
f(x)

g(x)

]
=

f ′(x) · g(x)− f(x) · g′(x)
(g(x))

2

29.1.5 Exponential

Let a > 0, then:

d

dx
[ax] = ax · ln(a)

29.1.6 Composite function (Chain rule)

d

dx
[f(g(x))] = f ′(g(x)) · g′(x)
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29.1.7 Inverse function

d

dx

[
f−1(x)

]
=

1

f ′(f−1(x))

29.1.8 Trigonometric functions

cos

sin

− cos

− sin

d

dx

d

dx

d

dx

d

dx

(secx)′ = secx tanx

(tanx)′ =
1

cos2(x)

(arcsinx)′ =
1√

1− x2

(arctanx)′ =
1

1 + x2

(cscx)′ = − cscx cotx

(cotx)′ =
−1

sin2(x)

(arccosx)′ =
−1√
1− x2

(arccot x)′ =
−1

1 + x2

29.2 Particular cases
1.

f(x) = g(x)α =⇒ f ′(x) = α · g′(x) · g(x)α−1 i.g.:
(
x2 + 1

)4
=⇒ 8x ·

(
x2 + 1

)3
2.

f(x) = eg(x) =⇒ f ′(x) = g′(x) · eg(x)

3.

f(x) =
1

g(x)
=⇒ f ′(x) =

−g′(x)

(g(x))
2

29.3 Physical application
29.3.1 Average acceleration aav

aav :=
v(tf )− v(ti)

tf − ti

29.3.2 Instant acceleration a(t)

a(t) := v′(t) = lim
t→0

v(t+ h)− v(t)

∆t
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30 Linearization
30.1 The linearization principle
In a very small neighborhood around a point a, we can assume that the function is linear at that point.

30.2 Tangent line approximation
In this case, assuming that the function is linear, we can use the tangent line equation:

f(x) = f(a) + f ′(a) · (x− a)

30.3 Error function
The error of the approximation is given by the difference between the exact function and the linearization:

E(x) = d(f(x) | flin(x)) = f(x)− f(a)− f ′(a) · (x− a)

31 Monotonicity
31.1 Definition of monotonicity
A real function f defined on an interval I ⊂ Df is denoted as:

• strictly monotonically increasing on I, if f(x2) > f(x1) applies for all x1, x2 ∈ I with x2 > x1;

• monotonically increasing on I, if f(x2) ≥ f(x1) applies for all x1, x2 ∈ I with x2 > x1;

• strictly monotonically decreasing on I, if f(x2) < f(x1) applies for all x1, x2 ∈ I with x2 > x1;

• monotonically decreasing on I, if f(x2) ≤ f(x1) applies for all x1, x2 ∈ I with x2 > x1.

31.1.1 Monotonicity criterion

Let the function f be differentiable on the interval I:

• If f ′(x) > 0 (resp. ≥ 0) for all x ∈ I, then f is strictly monotonically increasing (resp. monotonically
increasing) on I.

• If f ′(x) < 0 (resp. ≤ 0) for all x ∈ I, then f is strictly monotonically decreasing (resp. monotonically
decreasing) on I.

• If f ′(x) = 0 for all x ∈ I, then f is constant on I.

31.1.2 Monotonicity table

Let f(x) be differentiable, f ′(x) < 0 if a < x < b, a, b, c ∈ Df , and a, b, c are critical points, then:

f ′(x) + − + −

f(x) ↗ ↘ ↗ ↘

a b c

31.2 Critical point
Let yf (x) be a function, then we say that x ∈ Df is a critical point if f ′(x) = 0 or f ′(x) ↑

Warning: many critical points are local extrema, some aren’t.
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31.3 Darboux theorem
Let f be differentiable on an interval I:

1. find the critical points f ′(a, b) = 0, a < b;

2. take a random point between the critical points in c | a < c < b;

3. compute f ′(c).

If f ′(c) > 0, then f ′(x) > 0, ∀x ∈ (a, b)

If f ′(c) < 0, then f ′(x) < 0, ∀x ∈ (a, b)

32 Minimum and maximum
Let a real function f and a point x0 ∈ Df be given.

x

y

local maximum

global minimum

global maximum

−a a

Local and global extrema of a function in the interval [-a,a]

32.1 Local extrema
32.1.1 Local maximum

The function f has a local maximum point at point x0 if there is an open neighborhood U(xo) such that:

f(x) ≤ f(x0), ∀x ∈ U(x0) ∩ Df

32.1.2 Local minimum

The function f has a local minimum point at point x0 if there is an open neighborhood U(xo) such that:

f(x) ≥ f(x0), ∀x ∈ U(x0) ∩ Df

32.2 Global extrema
32.2.1 Global maximum

The function f has a global maximum at point x0 if:

f(x) ≤ f(x0), ∀x ∈ Df

32.2.2 Global minimum

The function f has a global minimum at point x0 if:

f(x) ≥ f(x0), ∀x ∈ Df
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32.3 Extrema tricks
• If f ′(x0) = 0 and f ′′(x0) < 0 are valid, f has a local maximum in x0;

• If f ′(x0) = 0 and f ′′(x0) > 0 are valid, f has a local minimum in x0.

Warning: This method does not work because if f ′′(x0) = 0, then we may have either a local maximum,
minimum or a stationary point.

33 Higher derivatives
We define y = f (n)(x) as the derivative of y = f (n−1)(x).

Remark: Derivatives will be written with the Lagrange’s notation and roman numbers, i.g.: f ′′′′(x) → f IV (x)

33.1 Concavity
33.1.1 Definition of Concavity

The concavity of a function f(x) describes the direction of its curvature, which can be upward when f ′′(x) > 0
or downward when f ′′(x) < 0.

Additionally, the concavity can be increasing when near the concavity f ′(x) > 0 and decreasing when f ′(x) < 0.

Upward, decreasing Upward, increasing

Downward, decreasing Downward, increasing

• f(x) is concave upward in an interval I if all the
tangents in I are below the graph.

• f(x) is concave downward in an interval I if all
the tangents in I are above the graph.

• If f ′′(x) > 0 for all x in an interval I, then f(x) is
concave upward in I.

• If f ′′(x) < 0 for all x in an interval I, then f(x) is
concave downward in I.

33.2 Inflection point
An inflection point for y = f(x) is a point x0 ∈ Df where the function is continuous and its concavity changes.

For any inflection point, f ′′(x) = 0.

x

y

Inflection Point

Concave downward, decreasing

Concave upward, decreasing

Warning: f ′′(x0) = 0 6⇒ x0 is an inflection point.
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33.3 Curvature of a function
Let y = f(x) be a derivable function in a point x0, then:

κ =
f ′′(x0)

(1 + (f ′(x0))2)3/2

33.3.1 Radius of curvature

The radius of curvature is given by the following formula:

rp =
1

|κ|

33.3.2 Graphical example

f(x)

C

x0

rp

• C = Center of the circle

• rp = Radius of curvature

• x0 = Specific point
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Part VII

Integrals

34 Definite integral
Let f(x) be a continuous function defined on an interval [a, b]. The definite integral from a to b represents the
net area under the curve of f(x) between x = a and x = b, considering areas above the x-axis as positive and
those below as negative.

−8 −6 −4 −2 2 4 6 8

−7

−5

−3

−1

1

3

5

7

■ Positive area
■ Negative area

a
bx

y

34.1 Definite integral cases
Let f(x) be a continuous function in R → R, then we have three possible cases:

34.1.1 First case

When a < b:

b∫
a

f(x) dx = F (x)
∣∣∣b
a
+ C

34.1.2 Second case

When a > b:

b∫
a

f(x) dx = −
a∫

b

f(x) dx

34.1.3 Third case

When a = b, ∀a ∈ R:

a∫
a

f(x) dx = 0
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34.2 Riemann sum
Let f : [a, b] → R, :

Rn :=

n−1∑
i=0

f(xi) ·∆x

with:

• ∆x =
b− a

n
, n ∈ N

• xi = a+ i ·∆x

Warning: there are functions that are not integrable in the Riemann sense, such as the Dirichlet function

34.2.1 Statement of the theorem

b∫
a

f(x) dx = lim
n→+∞

Rn

34.2.2 Sigma notation

Rn =

n−1∑
i=0

1

n
f(xi) =

n−1∑
i=0

1

n
f

(
1 +

i

n

)
=

n−1∑
i=0

1

n

(
1 +

i

n

)2

34.2.3 Graphic interpretation

The definite integral can be considered as the Riemann integral, which can be defined with the infinitesimal
sum of rectangles with a base tending to 0 and a height equal to a point within the base:

y

x

x∗
0 x∗

1 x∗
2 x∗

3 x∗
4 x∗

5 x∗
6

a

b
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34.3 Integration rules
34.3.1 Linearity

Let λ ∈ R, then: ∫
λf(x) dx = λ

∫
f(x) dx

34.3.2 Sum and subtraction∫
[f(x)± g(x)] dx =

∫
f(x) dx±

∫
g(x) dx

34.4 Integral with infinite bounds
34.4.1 When upper bound is +∞

∞∫
a

f(x) dx = lim
t→∞

t∫
a

f(x) dx

34.4.2 When lower bound is −∞

b∫
−∞

f(x) dx = lim
t→−∞

b∫
t

f(x) dx

34.4.3 When bounds are ∞

∞∫
−∞

f(x) dx = lim
t→−∞

a∫
t

f(x) dx+ lim
t→∞

t∫
a

f(x) dx
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35 Indefinite integral
We denote the set of all antiderivatives of a function f as an indefinite integral of f . This is written as:∫

f(x) dx

with no integration limits specified.

35.1 Fundamental theorem of calculus
Let F : [a, b] → R a continuous function, differentiable in (a, b).
Let f(x) = F ′(x) and ∀C ∈ R, then:

b∫
a

f ′(x) dx = f(b)− f(a)

Remark: Since F ′(x) = f(x), we have infinite possible primitives, which are distinguished by the constant C.

35.2 Second fundamental theorem of differential and integral calculus
If f : [a, b] → R is continuous and x0 ∈ [a, b], then ∀x ∈ [a, b]:

F0(x) =

x0∫
x

f(t) dt

35.3 Special cases
35.3.1 Trigonometric functions

cos

sin

− cos

− sin

F (x)

F (x)F (x)

F (x)

35.3.2 Other rules

∫
xα dx =

1

α+ 1
· xα+1 + C

∫
ex dx = ex + C

∫
x−1 dx =

∫
1

x
dx = ln |x|+ C

∫
1

1 + x2
dx = arctan(x) + C

Warning: The first formula is valid only for α 6= 1
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36 Integration with substitution rule
36.1 Indefinite integrals
According to the chain rule, we have:

d

dx
[F (g(x))] = F ′(g(x)) · g′(x) = f(g(x))g′(x)

If g′(x) is continuous:∫
f(g(x))g′(x) dx = F (g(x)) + C

Now let:

u = g(x) =⇒ du = g′(x) dx

With this we obtain: ∫
f(g(x))g′(x) dx =

∫
f(u) du

36.2 Definite integrals
The corresponding formula for definite integrals is:

b∫
a

f(g(x))g′(x) dx =

g(b)∫
g(a)

f(u) du

37 Integration by parts
37.1 Indefinite integrals
Let f(x) and g(x) be two functions. Integration by parts descends from the product rule of differential calculus:

(f(x) · g(x))′ = f ′(x) · g(x) + f(x) · g′(x)

By integrating both sides:

f(x)g(x) =

∫
(f(x)g(x))′ dx =

∫
f ′(x)g(x) dx+

∫
f(x)g′(x) dx

Rearranging this equation leads to the formula of integration by parts:∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx
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37.2 Definite integrals
The corresponding formula for definite integrals is:

b∫
a

f(x)g′(x) dx = [f(x)g(x)]
b
a −

b∫
a

f ′(x)g(x) dx

37.3 Particular cases
1.

d

dx

(
eh(x)

)
= h′(x) · eh(x) =⇒

∫
h′(x) · eh(x) dx = eh(x) + C

2.

d

dx
(ln(±f(x))) =

f ′(x)

f(x)
=⇒

∫
f ′(x)

f(x)
dx = ln |f(x)|+ C

38 Area calculation
38.1 Area between two curves

a b x

y
38.1.1 Case 1

Given a function y = f(x) and y = g(x), the area enclosed
by the two functions in the interval I = [a; b] is given by:

A =

b∫
a

|f(x)− g(x)| dx
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a

b c

x

y

38.1.2 Case 2

Given a function y = f(x) and y = g(x), the area enclosed
by the two functions in the interval I = [a; c] is given by:

A =

b∫
a

f(x)− g(x) dx+

c∫
b

g(x)− f(x) dx

39 Arc length
Let a plane curve be defined by a differentiable function f(x) whose derivative f ′(x) is continuous over the
interval a ≤ x ≤ b. Then, the arc length between the points (a, f(a)) and (b, f(b)) is:

s =

b∫
a

√
1 + [f ′(x)]

2
dx

40 Volume calculation
40.1 Means of slicing
40.1.1 Pyramid slicing

We slice the square-based pyramid horizontally so that the pyramid will look like many parallelotopes one over
the other with side s and volume s ·∆h, with ∆h → 0, in order to have infinitely many parallelotopes.

Computing the pyramid for n-slices:

V =

n−1∑
i=0

s2i ·∆h =

b∫
a

s2 dh

Since we don’t know how to solve an integral in two varables yet, we need to transform s into a function of h:

h : s = proportion of (h : s) =⇒ s = h · (h : s)

With this step we can write the volume with a single variable:

h(b)∫
h(a)

(h · (h : s))
2
dh

Remark: It’s always better to keep dh as a unique variable.
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40.2 Revolution around the x-axis
Let a plane curve be given by an equation y = f(x) with f continuous in the interval [a, b]. If the curve rotates
around the x-axis, we can determine his volume:

V = π

b∫
a

[f(x)]2 dx

x

y

y = f(x)

a b

∆x

xi xi+1

40.3 Revolution around the y-axis
Let a plane curve be given by an equation x = f−1(x) with f−1 continuous in the interval [f(a), f(b)]. If the
curve rotates around the y-axis, we can determine its volume:

V = π

f(b)∫
f(a)

[f−1(x)]2 dx

x

y

y = f−1(x)

a

b

∆y

yi

yi+1

y = −f−1(x)
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41 Center of gravity
41.1 Surface of a homogeneous plane
Consider a surface in the xy-plane, bounded above by a continuous curve y = f(x) and below by another
continuous curve y = g(x), within the interval a ≤ x ≤ b.

First, we compute the area between the two functions:

A =

b∫
a

(f(x)− g(x)) dx

The coordinates of its center of gravity S = (Sx, Sy) are then defined by:

x

Sx =
1

A

b∫
a

x(f(x)− g(x)) dx

y

Sy =
1

A

b∫
a

1

2

(
[f(x)2]− [g(x)]2

)
dx

41.2 Mass points
41.2.1 For one surface

The total center of gravity (centroid) of two homogeneous surfaces, with partial centers S1 = (x1, y1) and
S2 = (x2, y2) and areas A1 and A2, is S = (x, y), where x and y are:

x =
x1 ·A1 + x2 ·A2

A1 +A2

y =
y1 ·A1 + y2 ·A2

A1 +A2

41.2.2 For n-surfaces

The xy-coordinates are given by:

x =
x1 · (A1 + ...+An) ·An

A1 + ...+An
=

n∑
i=1

xiAi

n∑
i=1

Ai

y =
x1 · (A1 + ...+An) ·An

A1 + ...+An
=

n∑
i=1

xiAi

n∑
i=1

Ai
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42 Integral derivative
42.1 Leibniz integral rule
Let f(t) be a continuous function, and let a(z) and b(z) be differentiable functions of z. To compute its
derivative, we can use the Leibniz integral rule:

d

dz

b(z)∫
a(z)

f(t) dt = f
(
b(z)

)
· b′(z)− f

(
a(z)

)
· a′(z)
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