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Part 1
Logic

1 Propositional logic

Propositional logic is a branch of mathematics that deals with propositions and logical operations.

1.1 Logical connectives

A|B|-B|AANB|AvVB| A= B|A<B
T|T| F T T T T
T F| T F T F F
F|T| F F T T F
F|F | T F F T T

1.1.1 Logical conjunction A
Given two statements P and @, P A @ is true if both P and @ are true.
Let P = (z > 0) and @ = (y > 0), then:

‘P/\Q:(I>O/\y>0)‘

1.1.2 Logical disjunction V
Given two statements P and @, PV (@ is true if at least one of P or (Q is true.

Let P = (z =0) and Q = (y # 0), then:

‘P\/Q:(x:O\/y;éO)‘

1.1.3 Logical negation —
The negation of a statement P, denoted as =P, is true if P is false, and false if P is true.

Let P = (z > 5), then:

-P=(x<5)

1.1.4 Implication —

The symbol = indicates that if statement P is true, then statement ) must also be true (i.e., P implies Q).
Warning: It does not require that @ implies P.

P=(z=1) = Q=(zcN)]

1.1.5 Inference <—

The symbol < means that a conclusion or result implies the truth of an earlier statement.
If @ is true, then P must be true.

‘Q:(x>0)<:P:(xeR+)‘




1.1.6 If and only if <—

The symbol <= indicates that two statements P and @ are logically equivalent, meaning P is true if and only
if @ is true.

\p:(xeN, x#0) < Q= (z €N¥)

Part 11
Set Theory

2 The set theory

2.1 Logical symbols
2.1.1 Definition

Braces and the definition symbol “:=" are used to define a set giving all its elements:

’A:: {a,b,c,d,e}‘

2.1.2 Equal

In this case, the equal symbol means that the set A is equal to the set B:

2.1.3 Belongs to

The symbols € and 3 describe an element which is part of the set:

ac A<= A>a

2.1.4 Does not belong to

The symbols ¢ mean that an element does not belong to the set:

2.1.5 Inclusion and contains

The symbols C and D mean that a set has another set included in its set:

NCZ<«<—Z>N

2.1.6 For all/any

The symbol V means that we are considering any type of element:

In this case, we’ve defined a new set.



2.2 Numerical sets
o N := Natural numbers (including 0);
e Z := Integer numbers;
e Q := Rational numbers;
o R := Real numbers := Q U {irrational numbers} .

Notation: The “*” symbol means that the set does not include 0.

2.2.1 Inclusion of sets

INCZCQCRcC

B :={m1,-1,0};
C:={m1};
D :={n}.

Then we write some examples: m€ B, DC B, CCB, BZC, 0B, 0¢C.

3 Abstract algebra

3.1 Universe symbol

The symbol & := Universe describes a big set which contains all sets involved in our discussions (not always).

3.2 Venn diagram
3.2.1 Union AUB

If A and B are sets, then their union is:

|AUB={vzclU |z AVze B}

Uu A B




3.2.2 Intersection AN B

If A and B are sets, then their intersection is:

|[ANB={¥zeU|zcArzc B}

3.2.3 Complement A

If A is a set, its complement is:

’flz{VmEUMc%A}‘

BN




3.2.4 Difference between sets \

If A and B are sets, then their difference is:

([ A\B={vzecU|zcA =¢B}

3.2.5 Symmetrical difference A

If A and B are sets, then their symmetrical difference is:

|[AAB=(A\B)U(B\4)]

10



3.2.6 Disjoined sets (Empty sets) &

& := the set containing zero elements:

11



Part 111
Algebra

4 Intervals in the real line

Intervals describe what happens between two or more elements.

4.1 Examples

4.1.1 Interval sets

We have 4 cases:
o (a,b)={VzeR|a<z<b}
o [a,b)={VzeR|a<xz<b}
o (a,b]={VzeR|a<xz<b}
o [a,b)={VzeR|a<z<0b}

Notation: a and b are often called the “end points” of the interval;

4.1.2 Graphical examples
Ve € R, z € [a,b]

5 The extended line

In the real line R we add +oo.

Real line: (—o00,4+00) =R

Extended real line: [—o0,+00] =R

] ]

] ]

T T

—co —m —e _./3 -1 71 0

Remark: +o00 ¢ R

5.1 Properties

]
T T T

[\
N =+

(Vo €R | co>a | —00<0

5.2 Operation in the extended line

Ifa,b € R, thena+b, a—b, a-b,

% (with b # 0) stay the same

12



5.2.1 Additions
Let Va € R:
e a+ 00 = 00;
e a— 00 := —00Q;
e +00 + 00 1= +00;
e —00 — 00 = —00;

e 400 — 00 := undefined.

5.2.2 DMoltiplications
Let Va € R:
e +00 - +00 = +00;
e —00 - +00 = —00;
e —00- (—00) 1= o0
a>0 +oo

e ag-o0:=¢a<0 —o0
a =0 undefined

a>0 —o0
e a-(—0):=¢a<0 +oo
a =0 undefined

a a
[ ] 7:7:0;
—+00 —00
a>0 +oo
+o00
e — =<¢a<0 —
a
a=0 +oo
a>0 —o0
—00
e — =<¢a<0 H4o0
a

a=0 —o0

2 := undefined.
0o

6 Intervals including +oo

Intervals describe what happens between two or more elements, including +oo.

6.1 Examples
6.1.1 Interval sets
Let a € R, then:
e (—o0,a)={Vz eR | z < a};

(a,+o0) ={Vz eR | x > a};
. (

—00,a] ={Vz e R | x <a};
o [a,+ox]={Vz eR |z >a};
e (—00,400) =R;

o [—00,+00] =R.

13



6.1.2 Graphical examples
VreR, z € [a,b] U Je,+o0]

Notation: The union of two or more intervals where x € R is denoted by the symbol U.

7 The absolute value function

The absolute value is an operator that returns the positive value of a number, regardless of its original sign.

Let z € R, then:

zif >0
lz|=4q .
zif —x<0

7.1 Graph of absolute value functions

Let’s plot the function y = |z|:

2571

1.5 ¢

0.5+

35 -3 -25 -2 —15 -1 —-05 05 1 15 2 25 3 35

—0.5 ¢

7.2 Properties
Let a,b € R, then:
¢ la-bl =lal-b};

. ‘Z’—mforb#();

o Ja£b|# |a] £b].

14



7.3 Triangular inequalities

Let a,b € R, then:

|al+[b] > |a+b|
jal—[b] < |a—b]

8 Concept of functions

Let’s take any two sets A{a,b,c,d, e, f,g} and B{a1,b1,c1,d1,e1, f1,01}

fiA= B
ar— f(a)

A function is a relation between the sets A and B, according to which we associate to each element of A one
and only one element of B:

Vee Adlye B| (z,y) € f

Notation: f(a) = by, f(b) = a1, f(c)=c1, f(d) =dy, ...

Each point in set A is associated with one element of B. However, it is possible for more than two elements of
A to point to the same element of B.

’ The set A is called domain of f. The set B is called the codomain of f. ‘

8.1 Image (Range)
Let f: X = Y be a function. The image of f is defined as:

[m(f)={y Y |y =f(z). v € X}

Easily, the image is the set containing all the elements of the set B associated with the elements of the set A.

15



9 Linear function

9.1 Cartesian diagram

y-axis
P(3,3
:3 (3.3)
y |
0 x=3 "
X-ax1s

9.2 Straight line
Let A and B be any two distinct points, then there is one and only one line passing through A and B.

9.3 Slope-intercept equation

Let m,q € R, then

e m: slope;

e ¢: vertical intercept.

9.3.1 Slope

The slope of a line can be calculated with the equation

_ YB—Ya AZ/_
= en—os " Az = tan (6)

m

We have three different slope outcomes:
e m > 0, the line is increasing;
e m = 0, the line is stable;
e m < 0, the line is decreasing.

Warning: This works only if zp # x 4.

9.3.2 Drawing

16



9.4 Vertical lines

The more the value of m increases, the closer the line will get to the vertical, without ever reaching it.
Let ¢ € R, then x = c.

Vertical lines cannot be written as a function.

10 Equation of a line

Let m,z4,y4 € R and A(za,y4), then

‘y_yA:m(m_l'A)‘

e.g.: Find the line with m = —1 and A(1,0).
y—-0=-1(z—-1) = y=—z+1

Points: A(1,0); B(0,1)

10.1 General equation in a cartesian diagram

ax+by+c=0

Remark:

o All the lines can be described with this kind of equation;

e When b =0, a # 0, then ax = —¢c = xz%ceﬂ{;

a c a c
e When b # 0, then y = —Eac — where m = 3 and q = 3

17



11 Increasing and decreasing functions

Let f:[a,b)] — R
Notation: if your replace [a,b] with R, you obtain the definition in the whote R.

11.1 Increasing functions
o f is increasing if Va1, zo € [a,b] | 22 > 21, then f(x2) > f(z1);

o f is strictly increasing if V1,22 € [a,b] | 2 > x1, then f(x2) > f(z1).

11.2 Decreasing functions
o fis decreasing if Vz1,z9 € [a,b] | x2 > x1, then f(z2) < f(z1);

o f is strictly decreasing if Va1, 22 € [a,b] | x2 > x1, then f(z2) < f(x1).

12 Inverse function

Let’s take any two sets A and B.

A function f : A == B is invertible if there exists another function f~' : B == A, called the inverse
function, such that:

Vee A, [T (f(x) ==
Yye B, f(f ' (y) =y

Warning: A function is invertible if and only if it is bijective.

12.1 Facts about inverse functions

1)
Let f: D = R

f is invertible in D when:
e f is strictly increasing;
e f is strictly decreasing.
2)
Let f: D = R
f is invertible when f~!: Im(f) = D.

18



13 Expressions and factorization

13.1 Expressions, terms and factors
13.1.1 Expressions

An expression is any formula containing numbers, variables, operations, and brackets.

y=ax?+bx-c

13.2 Terms

A term is any part of the expression separated by “+” or “—".

2
b'
y—ax—i—xc

term term

13.2.1 Factors

Each term can be split into a product of factors.

‘x-y-(a—b)-24:x-y-(a—b)~2-2~2-3

Notice: the process of splitting a term into several factors is called “factorization”.
The goal of a factorization is to factorize an expression as much as possible.

13.2.2 Common factor

Any expression made of terms is composed of several factors.

‘m2+x3+x=x(x+x2+1), VZ‘ER‘

13.3 Notable producs

e (a+b)? =a®+ 2ab+ b (square of a binomial);

( 2
e (a—0b)?=a%—2ab+b? (square of a binomial);
e (a—0b)(a+b)=a®—b? (difference of squares);
e (a+b)(a® —ab+b?) = a®+b? (sum of cubes);

e (a—0b)(a®+ ab+b?) = a® — b* (difference of cubes).

Remark: notable products are useful to factorize expressions when we don’t know a common factor.

19



14 Polynomial function

Let n € N*, then a polynomial is the sum or difference of n-monomials.

15 Classification of polynomials

Polynomials can be classified using two criteria:

1. the number of terms;

2. the degree of the polynomial.

Number of Terms Name Example Degree
One Monomial | az? 1
Two Binomial | ax? — bx 2
Three Trinomial | az? —bx + ¢ 3
Four or more Polynomial | anz™ —a12” ' 4+ axz™ 2---ag | n-degree
Remark: The degree of a polynomial is the largest exponent of its monomials.
16 Symmetrical functions
Let y = kx™, then we plot:
16.1 n odd
|f(-2) = —f(z), VzecR|
16.1.1 Graph examples
1% 1%
Yy Yy
0.5 | 0.5 |
+ (L. | i
1 2 -2 —1
—0.5 ¢
116
k>0 k<0

20




16.2 n even

|f(-2) = f(z), VzeR

16.2.1 Graph examples

1 .
Y |
—9 )
0.8 +
0.6 t
—04 |
0.4+
—0.6 |
—0.8
+ 1‘ |
-2 -1 1 2 -1+
k>0 k<O
Concave up Concave down

Definition:
« a function y = f(x) is called odd if it is symmetric with respect to the origin;

« a function y = f(x) is called even if it is symmetric with respect to the y-axis.

16.3 General case

Let y = p(x), where p(z) is any polynomial with real coefficients:

’p(x):an~x”+an_1~x”*1+an_2~x”*2+...+a2~x2+a1~:E1+a0

where:
e neN;
o n = deg(p(x));

e a, = leading coefficient.

16.4 Symmetry of a polynomial

Let y = p(x) be a polynomial function, then:

1)

y = p(x) is odd iff all the degrees of all the terms of p(x) are odd,;

2)
y = p(z) is even iff all the degrees of all the terms of p(x) are even;

3)
y = p(x) has mixed degrees, p(x) is neither odd nor even.

21



17 Intersection with axis

17.1 Vertical intersection

Let y = f(x) be any function, then we solve for y:

17.2 Zeros of a function

Let y = f(x) be any function, then we solve for x:

17.3 Graph example
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18 Dominant elements in a function approaching +oo

As x approaches oo, the term with the highest degree in a polynomial function dominates the behavior of the
function.

‘p(x) has, as a dominant, the element a,, with the highest degree x™ ‘

18.1 Order of dominance
18.1.1 Approaching to 4+oo

Let n € N, meN, 2 <n <m, then:

’1n(x)<x<x”<xm<n‘”<m“’<a:w

In these cases, we always have 1 — 400 = p(z) = +o0

18.1.2 Approaching to -co
Let A > 2 and odd, k& > 2 and even.

<2<zl <0
—rF <22 <2l <0

Functions like 2* (with A odd) and —z* (with k even) both approach —oo, but at different rates.

18.1.3 Dominance in rational functions

When the dominant element is at the numerator:

n

lim =00
T—00 {L‘nfl
When the dominant element is at the denominator:
) xnfl
lim =0
r—oo

When we have the same degree either in the numerator and in the denominator:

Definition: horizontal asymptote appears when x approaches to oo, which implies that y approaches to a
number A different from 4oo
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19 Exponential and logarithm functions

The relationship between exponentials and logarithms is based on the following formula:

a8 (®) = g e log,(a”) =z

19.1 Exponentials
19.1.1 General equation

Let « € R, z € R, and a > 1, then:

19.1.2 Euler’s number

Euler’s number is defined by the limit:

Alternatively, it can be expressed as:

n=0

19.2 Logarithms
19.2.1 Natural logarithm

The inverse function of the Euler’s exponential function:

‘f(a:) =" < h(z) = In(z) ‘

Remark: the domain of In(z) is Dy, : Vo € R

19.2.2 Logarithms with arbitrary bases

The inverse function of any arbitrary exponential function:

| f(z) =n" <= h(z) = log, ()]

Alternatively, it can be expressed as:

In(x)
19.2.3 Common logarithm
The common logarithm uses base 10:
In(z)
10g10($) - 111(10)
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19.3 Exponential growth

| N(t) = No - ]

20 Composite functions

Let y = f(x) and z = g(y) be two functions, then:

z=g(f(x))

20.1 Examples

1)
Let f(x) = 2% + 42 and g(y) = y* + cos(y) be two functions, then:

g(f(x)) = (:L‘2 + 430)2 + Cos(:zc2 + 4x)
2)

Let f(x) = 23, h(z) = arctan(z) and g(z) = In(z) be functions, then:

g(h(f(2))) = In(arctan(z*))
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Part IV

Trigonometry

21 Trigonometry

21.1 Conversion table of degrees and radians

Angles (in Degrees) | 0° | 30° 45° 60° 90° | 180° | 270° | 360°

Angles (in Radians) | 0° | n/6° | n/4" | n/3° | n/2" | « | 3x/2° | 2«
sin(6) 0| 1/2 | V2/2 V32| 1 0 —1 0
cos(6) L[ V32| Vv2/2 | 1/2 0 -1 0 1
tan(d) 0 | v3/3 1 V3 00 0 00 0

Remark:

cos(2m + 0) = cos(0)

Remark: Let Vk € Z, V0 € R, then:

sin(27 + 0) = sin(0)

’ cos( + 2mk) = cos(0) ‘

21.2 Trigonometric functions in the unit circle

II

Y

A

III

Remark: the circle has center in the origin O, radius = 1 and function 22 + % =1
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Trigonometric functions can be extended to angles beyond 0 and 90° using the unit circle. For an angle 6 in
the unit circle:

sinf:=y | cosf:=z | tan @ = 2
x

21.2.1 Property 1 — Domain and range
Because we are inside a circle of radius 1:

o —1<cos(f) <1,

e —1<sin(d) < 1.

21.2.2 Property 2 — Trigonometric identity

Because we have a 90° angle, we can use Pythagoras:

(6 + il — 0P|

Let VO € R, then we can compute the following trigonometric identity:

‘sin2(9) +cos?(f) =1 ‘

21.3 Tangent

A tangent of an angle is exactly the slope of a line:

A 31
m = A—z = tan(f) =

3
Remark: the tangent is not defined when the angle is g or %, that is when we have a vertical line.

21.4 Domain of trigonometric functions

cos(z), z2°€R

sin(xz), z¢e€R

y = tan(x), z¢€R\ {g+k7r|k:€Z}
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21.5 Inverse trigonometric functions

Warning: in order to be invertible, a function should be either always strictly increasing or always strictly
decreasing.

21.5.1 Arccosine

The domain of the arccosine is Vz € [—1,1] and the range is Vy € [, 0]

)
— y =cos(x)
—_— y =X

— y = arccos(z)

1 A
) 1 \\3
114
21.5.2 Arcsine
The domain of the arcsine is Vo € [—1, 1] and the range is Vy € {fg, g]
2 .
Y
1.5
1 i
0.5
! It It It It It It a: |
-2 —-15 -1 —-0. 05 1 15 2
0.5 +
-1 — y = sin(z)
15— YTF
— y = arcsin(z)
_2 1
21.5.3 Arctan
The domain is Vo € R and the range is Vy € [—g, g}
L1y
2 i
‘ z
-6 -4 =2 2 4 6
21— y = tan(z)
—_— y =X
— y = arctan(z)
T
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21.6 Harmonic oscillation

Let A, B > 0, then the function is oscillating harmonically with ¢ around D:

y:D+A~Sin(Bt+cp)‘

displacement

Amplitude

distancg or time
4

wavelength A wavelength A
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Part V
Limits

22 Concept of limit of a real function

22.1 Definition

Let f: D — R be a function and ¢ a point, the limit L = lim f(x) with = tending to ¢ exists only if in a given
r—c

€ > 0 arbitrarily small, there exists another § > 0 such that:

0<|e—c[ <0 = [f(2)— L] <]

22.2 Graphic interpretation

Y
L+e¢
L R e ek /
L—¢

23 Limit value at a finite point

The notion of the “limit of f(z) as « approaches a (finite) point a € R” is only meaningful if the point a can be
approximated by points from the domain of definition of f. We can precisely formulate this concept with the
notion of an “accumulation point”.

Definition
Given a set A C R and a real number a € R, the real number « is called an accumulation point of the set A if
every open interval of the form (a — §,a + ) with § > 0 contains infinitely many points of A.

In the above definition, it is not required that a lies in A. Often, we will consider functions whose domains are
unions of intervals of the form:

(b,a) U (a,c)

For example, consider the function defined by f(z) = I, defined on (—00,0) U (0,00). The point 0 is an
accumulation point of the domain of definition of %

Definition

Given a real function f, an accumulation point zg of Dy, and L € R =R U {£o0}, we say that the function f
has the limit L as ¢ — xq if f(x) gets arbitrarily close to L, provided z is sufficiently close to (but never equal
to) .

30



23.1 One-sided limits

Often, one considers limits where x approaches zy from only one direction, either from the right or from the
left. In these cases, we refer to a right-sided or left-sided limit and use the following notations:

lim f(z) or lim  f(z) or lim f(x)

w—)wg' T—T,T>T0o T—To

for a right-sided limit, and:

lim f(z) or lim  f(z) or lim f(z)

T—xy r—x0,r<ITg T—Tg

for a left-sided limit.

lim can indicate a limit as @ approaches an arbitrary point (e.g., a = xo for zy € R), as well as a one-sided
Tr—a
+

limit (a = zg or a =z, for xy € R), or a limit at infinity (a = £00).

23.1.1 Graph example
f(z)

24 Continuity of a function

Definition Continuity of a real function
Given a real function f: D — C, the function is continuous at the point x = ¢ where ¢ € D if:

lim f(z) = f(c)

r—c

and therefore, if the limit exists and is equal to the value of the function at that point.

In other words, the function is continuous at the point if the limit exists (from both the left and right, coinciding)
and the value of the function at that point is equivalent to the value of the limit.

f(l=])

Y
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24.1 Continuity in short

o A function is said to be continuous at a point if the limit at that point exists and is equal to the value of
the function at that point;

o A function is said to be continuous on a subinterval of the domain if it is continuous at all points in that
subinterval;

e A function is said to be continuous if it is continuous at all points in its interval.
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Part V1

Der

Assume that y = f(z) is a differentiable function in some interval (a,b), then we have defined the derivative

function.

ivatives

25 Derivative notations

Type of derivative First derivative Second derivative n-th derivative
Lagrange’s notation f'(z) () ) ()
o . d d? d"
Leibniz’ tat — —_— -—
eibniz’s notation dxf(:z:) def(x) dac”f(x)
Leibniz’s notation d d> dr
in a point a dx @) a=a da? F@)] o= dzm V@) o=
Newton’s notation f f (}l‘)

26 Definition of derivative

The derivative of a real function f(x) is defined as:

fl@+ Az) — f(z)
Az

f'(x) = lim

Az—0*

if the limit exists.

Definition: f’(a), if it exists, is called derivative of f(z) at x = a.
It corresponds to the slope of the tangent line at = a to the function y = f(x)

26.1 Simplified definition (Exponentiation rule)
Let Va € R, then:

f@)=2"= f@)=a 2]

26.2 Existence of the derivative

The derivative exists if and only if:

Az—0+t

Remark: If a function is differentiable, then it is continuous:

Differentiable = Continuous

33



27 Geometric meaning of the derivative

Y
B

Az

yd

When the Az of the slope becomes infinitesimally small,
we obtain the exact slope at a point (instantaneous).
This slope is represented by the tangent line:

I Ay
im —=
Ar—0 Ax

Ay

Az

N

27.1 Equation of the tangent line

The secant of a function f(z) between a point A and B
is given by:

Ay J(B) - J(A)
Az B-A

The closer we bring A and B, the smaller Az becomes.
As Ax decreases, the slope of the secant becomes more
representative of the rate of change of f in the interval
[4; B].

S

The derivative of a function f(z) is therefore another
function, f’(x), which represents the rate of change of
f(z) at every point. In other words, f’(x) represents the
slope of the tangent at each z of f(x). This is precisely
represented by the definition of the derivative, which is
the slope AY calculated with the limit of Az — 0.

Ax

When f’(z) is defined, p = (, f(x)), and p € tangent line, then:

ly—f(0)=f(a) (=—a)|

28 Bernoulli — de I’'Hoé6pital Theorem

Bernoulli — de I’H6pital theorem is applicable only if the function results in an indeterminate form.

28.1 The 7 indeterminate forms

The seven indeterminate forms are:

(o8]

>, 0-00,

9
0’

o0 —

o0,
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28.2 Statement of the theorem

Let us consider two real functions f(z) and g(x) that are differentiable in a neighborhood of o € R (not
necessarily at xg).

x
If lim f(@) results in an indeterminate form, then:
a—ao g(z)

i@ @
A g@) ~ A g(a)

if the limit exists.

29 Derivation rules

29.1 Normal cases

Let y = f(x) and y = g(x) be two derivable functions, then:

29.1.1 Linearity
Let ¢ € R, then:

29.1.2 Sum and subtraction

29.1.3 Multiplication

29.1.4 Quotient

29.1.5 Exponential
Let a > 0, then:
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29.1.7 Inverse function

29.1.8 Trigonometric functions

/\

—sin

N

dz
(secz) =secxtanw (cscx)' = —cscxcotx
’r_ 1 I -1
(tanz) = o2 (@) (cotz) = Sn2(2)
. ;L 1 , -1
(arcsinz)’ = Wi (arccosz)’ = Wi
;1 -1
(arctanz) = T2 (arccot x)" = i
29.2 Particular cases
1.
fx)=g()* = f(z)=a-¢(z) g(x)* " ig: (2 + 1)4 = 8z - (2% + 1)3
2.
f() = ) = f(z) = g'(a) - o
3.
L )
fla)=—— = f'(z) =
29.3 Physical application
29.3.1 Average acceleration a,
) ()
tr— 1
29.3.2 Instant acceleration a(t)
v(t + h) —v(t)

a(t) :=v'(t) = lim

At
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30 Linearization

30.1 The linearization principle

In a very small neighborhood around a point a, we can assume that the function is linear at that point.

30.2 Tangent line approximation

In this case, assuming that the function is linear, we can use the tangent line equation:

[f@) = fla)+ (@) (z—a)]

30.3 Error function

The error of the approximation is given by the difference between the exact function and the linearization:

|B(x) = d(f(2) | fun(2)) = f(x) = f(a) = f'(a) - (z — a) |

31 Monotonicity

31.1 Definition of monotonicity

A real function f defined on an interval I C Dy is denoted as:
o strictly monotonically increasing on I, if f(xq) > f(x1) applies for all x1, x5 € T with o > z1;
o monotonically increasing on I, if f(xze) > f(x1) applies for all x1,z2 € I with zo > z1;
o strictly monotonically decreasing on I, if f(x2) < f(x1) applies for all 21, z9 € T with x5 > xy;

o monotonically decreasing on I, if f(xg) < f(x1) applies for all 1,29 € I with xo > x1.

31.1.1 Monotonicity criterion
Let the function f be differentiable on the interval I:

o If f/(z) > 0 (resp. > 0) for all € I, then f is strictly monotonically increasing (resp. monotonically
increasing) on I.

o If f/(z) < 0 (resp. <0) for all € I, then f is strictly monotonically decreasing (resp. monotonically
decreasing) on 1.

o If f/() =0 for all z € I, then f is constant on I.

31.1.2 Monotonicity table

Let f(x) be differentiable, f'(z) < 0if a <z < b, a,b,c € Dy, and a, b, ¢ are critical points, then:

31.2 Ceritical point
Let ys(x) be a function, then we say that © € Dy is a critical point if f'(z) =0 or f'(z) T

Warning: many critical points are local extrema, some aren’t.
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31.3 Darboux theorem
Let f be differentiable on an interval I:
1. find the critical points f'(a,b) =0, a < b;
2. take a random point between the critical pointsin ¢ | a < ¢ < b;

3. compute f'(c).

If f'(c) > 0, then f'(z) >0, Vx € (a,b)
If f'(c) <0, then f'(z) <0, Vz € (a,b)

32 Minimum and maximum

Let a real function f and a point ¢ € Dy be given.

global maximum

local maximum

Local and global extrema of a function in the interval [-a,a]

32.1 Local extrema
32.1.1 Local maximum

The function f has a local maximum point at point zg if there is an open neighborhood U(z,) such that:

[£(@) < f(o), Vo € Ulao) N Dy |

32.1.2 Local minimum

The function f has a local minimum point at point z( if there is an open neighborhood U(z,) such that:

[F@) = J(@0), Ve € Ulao) N Dy |

32.2 Global extrema
32.2.1 Global maximum

The function f has a global maximum at point xg if:

‘f(fU)Sf(ﬂﬁo), Vl‘E'Df‘

32.2.2 Global minimum

The function f has a global minimum at point z if:

| f(2) = f(x0), Va € Dy |
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32.3 Extrema tricks
o If f'(x9) =0 and f"(xg) < 0 are valid, f has a local maximum in xg;
o If f'(xg) =0 and f"”(xg) > 0 are valid, f has a local minimum in z;.

Warning: This method does not work because if f”/(x¢) = 0, then we may have either a local maximum,
minimum or a stationary point.

33 Higher derivatives

We define y = f(")(z) as the derivative of y = ("~ (z).

Remark: Derivatives will be written with the Lagrange’s notation and roman numbers, i.g.: f""(z) — fIV(z)

33.1 Concavity
33.1.1 Definition of Concavity

The concavity of a function f(z) describes the direction of its curvature, which can be upward when f”(x) > 0
or downward when f”(z) < 0.

Additionally, the concavity can be increasing when near the concavity f/(z) > 0 and decreasing when f/(z) < 0.

Upward, decreasing Upward, increasing
¢ f(x) is concave upward in an interval I if all the
tangents in I are below the graph.
e f(x) is concave downward in an interval I if all
the tangents in I are above the graph.
Downward, decreasing Downward, increasing

o If f(x) > 0 for all z in an interval I, then f(z) is
concave upward in I.

o If f”(x) < 0 for all  in an interval I, then f(x) is
concave downward in I.

33.2 Inflection point
An inflection point for y = f(x) is a point zy € Dy where the function is continuous and its concavity changes.

For any inflection point, f”(z) = 0.

Concave downward, decreasing

Inflection Point

Concave upward, decreasing

Warning: f”(z¢) = 0 # xo is an inflection point.
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33.3 Curvature of a function

Let y = f(x) be a derivable function in a point zg, then:

33.3.1 Radius of curvature

The radius of curvature is given by the following formula:

Tp:m

33.3.2 Graphical example

j[69]

Xo

e (C = Center of the circle
e 7, = Radius of curvature

e 1z = Specific point

40



Part VII

Integrals

34 Definite integral

Let f(z) be a continuous function defined on an interval [a,b]. The definite integral from a to b represents the
net area under the curve of f(x) between x = a and x = b, considering areas above the x-axis as positive and
those below as negative.

Positive area
Negative area

34.1 Definite integral cases

Let f(x) be a continuous function in R — R, then we have three possible cases:

34.1.1 First case
When a < b:

34.1.2 Second case
When a > b:

34.1.3 Third case
When a = b, Va € R:
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34.2 Riemann sum

Let f:[a,b] = R, :

with:
h—
° Am:J’ nGN
n

e r,=a+1i-Ax

Warning: there are functions that are not integrable in the Riemann sense, such as the Dirichlet function

34.2.1 Statement of the theorem

n—-+oo

/ f@)de = lim R,

34.2.2 Sigma notation

34.2.3 Graphic interpretation

The definite integral can be considered as the Riemann integral, which can be defined with the infinitesimal
sum of rectangles with a base tending to 0 and a height equal to a point within the base:

Y

42



34.3 Integration rules
34.3.1 Linearity
Let A € R, then:

/)\f(x)dm:)\/f(x)dx

34.3.2 Sum and subtraction

Ju@ tg@lde= [ f@ydrs [ oo s

34.4 Integral with infinite bounds
34.4.1 When upper bound is +oo

t

/f(x) dx = tll)rgc flx)dx

a

34.4.2 When lower bound is —co

b

/f(x)dm: lim /bf(x)dx

t——o0

34.4.3 When bounds are oo

o}

/f(a:)dx: lim /af(x)dﬁtlg&/tf(x)dx

t——o0
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35 Indefinite integral

We denote the set of all antiderivatives of a function f as an indefinite integral of f. This is written as:

/f(x) dx

35.1 Fundamental theorem of calculus

with no integration limits specified.

Let F : [a,b] = R a continuous function, differentiable in (a,b).
Let f(z) = F'(x) and VC € R, then:

b
/ f(x)dz = f(b) - f(a)

Remark: Since F'(z) = f(x), we have infinite possible primitives, which are distinguished by the constant C.

35.2 Second fundamental theorem of differential and integral calculus

If f:[a,b] — R is continuous and z¢ € [a, b], then Vz € [a, b]:

Fo(z) = / f(tydt

35.3 Special cases

35.3.1 Trigonometric functions

VCOS\F(J:/)

— sin sin

F,(x)\ — CoS </F(l‘)

1 1
/xo‘dw: oty O /xildx:/fdx:1n|x|+0
a+1 T

35.3.2 Other rules

' 1
/exda::eerC’ /7dx:arctan(z)+c
1+ 22

Warning: The first formula is valid only for a # 1
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36 Integration with substitution rule

36.1 Indefinite integrals

According to the chain rule, we have:

d

7z Fg(@)] = F'(g(2)) - ¢'(z) = flg(2))g' ()

If ¢'(x) is continuous:
[ oo (@) do = Fg(a)) + €

Now let:

u=g(r) = du=g(x)dz

With this we obtain:

[ #aong w)da = [ su)du

36.2 Definite integrals

The corresponding formula for definite integrals is:

37 Integration by parts

37.1 Indefinite integrals

Let f(z) and g(x) be two functions. Integration by parts descends from the product rule of differential calculus:
(f(z) - g(x)) = f'(x) - g(x) + f(x) - g'(2)
By integrating both sides:

f(@)g(z) = / (f(@)g(x)) dz = / f(@)g(x) de + / f(@)g (z) da

Rearranging this equation leads to the formula of integration by parts:

/ f(@)g (@) de = f(x)g(z) - / F(@)g(x) do
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37.2 Definite integrals

The corresponding formula for definite integrals is:

37.3 Particular cases
1.
d

- (eh(w)) =N (z) "™ — /h'(m) M) dy = M) O
z

s =1 — L8+

38 Area calculation

38.1 Area between two curves

38.1.1 Casel

Given a function y = f(x) and y = g(z), the area enclosed
by the two functions in the interval I = [a;b] is given by:

b

A= / (@) - ()| dz

a

Y B W——
[ i
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38.1.2 Case 2

Given a function y = f(x) and y = g(z), the area enclosed
by the two functions in the interval I = [a; ¢] is given by:

b c

A= [ 1@ - g@)de+ [ g(a) - fo) do

a b

b c

<)

39 Arc length

Let a plane curve be defined by a differentiable function f(x) whose derivative f’(x) is continuous over the
interval @ <z < b. Then, the arc length between the points (a, f(a)) and (b, f(b)) is:

b

s:/ 1+ ()2 da

a

40 Volume calculation

40.1 Means of slicing
40.1.1 Pyramid slicing

We slice the square-based pyramid horizontally so that the pyramid will look like many parallelotopes one over
the other with side s and volume s - Ah, with Ah — 0, in order to have infinitely many parallelotopes.

Computing the pyramid for n-slices:

n—1 b

V:Zsf~Ah:/52dh

=0

a

Since we don’t know how to solve an integral in two varables yet, we need to transform s into a function of h:

h:s:proportionof(h:s):>s:h-(h:s)‘

With this step we can write the volume with a single variable:

h(b)

/(h-(h:s))2 dh

h(a)

Remark: It’s always better to keep dh as a unique variable.
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40.2 Revolution around the x-axis

Let a plane curve be given by an equation y = f(z) with f continuous in the interval [a, b]. If the curve rotates
around the x-axis, we can determine his volume:

V= W/b[f(a:)]zdx

40.3 Revolution around the y-axis

Let a plane curve be given by an equation x = f~!(x) with f~! continuous in the interval [f(a), f(b)]. If the
curve rotates around the y-axis, we can determine its volume:

[
V=r [ [f(2)de
sl
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41 Center of gravity

41.1 Surface of a homogeneous plane

Consider a surface in the zy-plane, bounded above by a continuous curve y = f(x) and below by another
continuous curve y = g(x), within the interval a < z <b.

First, we compute the area between the two functions:

b
A= / (f(2) - g(x)) de

The coordinates of its center of gravity S = (5;,.5,) are then defined by:

©
1 b
S, = [alr@) - (@) do
®
1 b 1
5= [ 5 U@ - @) di

41.2 Mass points

41.2.1 For one surface

The total center of gravity (centroid) of two homogeneous surfaces, with partial centers S; = (x1,y;) and
Sy = (x2,y2) and areas A; and As, is S = (x,y), where x and y are:

= lEl'A1+I2'A2
A+ Ay

y:yl'A1+y2'A2
A+ As

41.2.2 For n-surfaces

The xy-coordinates are given by:

xl * (Al + + ATL) . Arn i=1

. At 1A,
>4
=1
n

> @A

Y= - (A4 .+ A Ay S

A1+ ...+ A, iAZ‘

i=1
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42 Integral derivative

42.1 Leibniz integral rule

Let f(t) be a continuous function, and let a(z) and b(z) be differentiable functions of z. To compute its
derivative, we can use the Leibniz integral rule:

b(z)

diz / ft)dt = f(b(z)) b (2) — f(a(z)) Ld'(2)
a(z)
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