
Chapter 1

Descriptive Statistics

1.1 Descriptive Statistics of One-Dimensional Data

Descriptive statistics to use with the representation of data sets (compilations of vari-
ous data). It uses certain numbers to characterize such data sets (for example the sam-
ple mean) and represents them graphically in a coordinate system. The first deal with
one-dimensional data, where one measurement quantity of a test object is determined.
We will use the following example to study important concepts and procedures more
precisely.

1.1.1 Measuring the Melting Heat of Ice

As an introductory example, let us consider two data sets with which to compare two
methods of determining the latent heat of melting ice.

Example 1.1.1

Repeated measurements of heat released when passing from ice at −0.7 ◦C to water at
0 ◦C yielded the values (in cal/g) listed in Table 1.1. Even though the measurements
were taken with the greatest possible care and all interference signals were disabled,
the measurement values vary with either method. The following questions then arise:

• Is there a difference between method A and method B?

• If yes, how can we determine this difference?

It is evident that both methods exhibit measurement values around 80. However,
method A has only 2 values out of 13 below 80, while method B has only 2 values out
of 8 above 80. So, the values from method A are more likely to be larger than those
from method B. But what does “more likely” mean here? So, it is worth summarizing
the two measurement series in such a way as to compare the two methods. ◭

1



Chapter 1 Descriptive Statistics

Method A 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 80.05

Method A 80.03 80.02 80.00 80.02

Method B 80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97

Table 1.1: Measurements to determine the latent heat of melting ice based on two methods.

Descriptive statistics is about how (quantitative) data can be organized and summa-
rized. The objective is simplifying the interpretation and subsequent statistical analy-
sis of the data. We do this using:

• graphic representations

• summaries of data, which should highlight the important characteristics of the
data, such as the mean location of the measurement values and their dispersion
around the mean location.

These so-called summary statistics should roughly characterize the data and summa-
rize it numerically.

When performing statistical analyses, as we will study them throughout this course,
it is extremely important to avoid simply adapting a model or applying a statistical
method blindly. The data should always be represented using appropriate graphical
tools and the summary statistics, since this is the only way to find (possibly unex-
pected) structures and features.

The data below is designated x1, . . . , xn, where n is called the size of the measurement
series. In the case of the measurement series for method A, we have n = 13:

x1 = 79.98, x2 = 80.04, . . . , x13 = 80.02

1.1.2 Representing Measurement Values

Before we discuss summary statistics and graphic representations of data sets, we
must settle some rules for representing measurement values. To this end, we need
the concepts of decimal places and significant digits.

Decimal places refer to the digits used in the decimal representation of a number that
are to the right of the decimal point. In the example above, the measurement points

x1 = 79.98, x2 = 80.04, . . . , x13 = 80.02

have two decimal places.

Significant digits are defined as the first non-zero digits through the rounded digit. The
rounded digit is the last digit that can be indicated after rounding. So, in the example
above, we have four significant digits.
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Example 1.1.2

Number Number of significant digits Number of decimal places
98.76 4 2

0.009876 4 6

987.6 · 104 4 1

9.876 · 106 4 3

◭

Remarks:

i. Integers have no decimal places.

ii. In some cases, determining the significant digits can be ambiguous: Does 20 have
one, two, or even more significant digits? Depending on the context, a number
should be considered exact if it is used as a natural number, for example, or it
should be considered rounded if it is used as a numerical value of a physical
quantity. For an exact number, the question of significance does not come up,
since it can be extended with any number of zeros after the decimal point.

iii. Using the scientific notation with powers of 10 can prevent ambiguity of a quan-
tity received from measurement technology with the numerical value 20. So, in
the case of one significant digit, this would be 2 · 101; in the case of three signifi-
cant digits, 2.00 · 101. �
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Representing Computational Results

The two following rules apply to the representation of a computational result of
measurement values:

1. The result of an addition/subtraction has the same number of decimal places
as the number with the fewest decimal places.

2. The result of a multiplication/division has the same number of significant
digits as the number with the fewest significant digits.

Example 1.1.3

Number Lowest number of Lowest number of Result
significant digits decimal places

20.567+ 0.0007 3 20.568
12 + 1.234 0 13

12.00 + 1.234 2 13.23
12.000+ 1.234 3 13.234

1.234 · 3.33 3 4.11
1.234 · 0.0015 2 0.0019

◭

Remark 1.1.1

Rounding should occur as late as possible during the calculation. Otherwise, multi-
ple rounding errors could combine into a very large total deviation. To prevent this
amplification, known quantities should be populated with at least one more digit in
the intermediate calculations than are shown in the final result.

1.1.3 Summary Statistics

It often makes sense to summarize data sets numerically. This reduces data sets to one
or more numbers. We usually use two parameters: One describes the mean location
of the measurement values and the other the variability or dispersion of the same
measurement values. By dispersion, we mean the measurement values’ “average”
deviation from the mean location.
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Arithmetic Mean

The best known quantity for the mean location is the widely known average, or

Arithmetic Mean xxx

x =
x1 + x2 + · · ·+ xn

n
=

1

n

n

∑
i=1

xi

Remark 1.1.2

In some cases, the notation xn may be used where n denotes the size of the measure-
ment series.

Example 1.1.4 Measuring the melting heat of ice with method A

The arithmetic mean of the n = 13 measurements is

x13 =
79.98 + 80.04 + · · ·+ 80.03+ 80.02+ 80.00+ 80.02

13
= 80.02

So, we add up all the values and divide the sum by the number of values.

With Python we calculate the sample mean as follows:

from pandas import Series, DataFrame

import pandas as pd

methodA = Series([79.98, 80.04, 80.02, 80.04, 80.03, 80.03,

80.04, 79.97, 80.05, 80.03, 80.02, 80.00, 80.02])

print(methodA.mean())

methodA.mean()

◭

Empirical Variance and Standard Deviation

Even though the arithmetic mean already says a lot about the data set, it only de-
scribes partially describes it. For example, let us consider the following two data sets
of (fictitious) student grades:

2; 6; 3; 5 und 4; 4; 4; 4
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Both have the same sample mean of 4, but they have very different distributions of
the data around that mean. In the first case, there are two good and two poor students;
in the second case, all students are equally good. We say the data sets have different
dispersions around the means.

We want to record this dispersion numerically. A first approach consists in taking the
average of the distances from the mean. In the first case, this would be

(2 − 4) + (6 − 4) + (3 − 4) + (5 − 4)

4
=

−2 + 2 − 1 + 1

4
= 0

In the second case, we also obtain 0. So, this method does not contribute much to
describing the dispersion, since the distances from the mean can be negative and can
cancel each other out, as in the case above.

The next approach consists in replacing the distances from the mean with the absolute
values of the distances from the mean. In the first case, we then obtain

∣∣(2 − 4)
∣∣+

∣∣(6 − 4)
∣∣+

∣∣(3 − 4)
∣∣+

∣∣(5 − 4)
∣∣

4
=

2 + 2 + 1 + 1

4
= 1.5

The grades deviate on average by 1.5 points from the sample mean. In the second case,
the value is obviously 0. The greater this value becomes (and it is always greater than
or equal to 0), the more the data points diverge while having the same mean. This
value for the dispersion is also known as the mean absolute deviation.

Since absolute value are not easy to work with (e.g. in derivatives), the (seemingly
more complex) empirical variance and empirical standard deviation for the measure of
variability or dispersion of the measurement values. These are defined as follows:

Empirical Variance Var (x) and Standard Deviation sx

Var(x) =
(x1 − xn)2 + (x2 − xn)2 + · · ·+ (xn − xn)2

n − 1
=

1

n − 1

n

∑
i=1

(xi − xn)
2

sx =
√

Var(x) =

√
1

n − 1

n

∑
i=1

(xi − xn)2 .

Remarks:

i. For the variance, we square the deviations xi − xn so the deviations from the
mean do not cancel each other out. The denominator n − 1, instead of n, is math-
ematically justified.
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ii. The standard deviation is the square root of the variance. Since our calculation
of the variance uses the squares of the distances from the mean, the square root
brings us back to the same unit as in the data. The value of the empirical variance
has no meaning in the physical world. We simply know the greater this value, the
greater the dispersion. �

Example 1.1.5 Measuring the melting heat of ice with method A

The arithmetic mean of the n = 13 measurements is x13 = 80.02 (see above), and the
empirical variance gives us

Var(x) =
(79.98 − 80.02)2 + (80.04 − 80.02)2 + · · ·+ (80.00 − 80.02)2 + (80.02 − 80.02)2

13 − 1

= 0.000 574 4

Then the empirical standard deviation is

sx =
√

0.000574 = 0.02397

Therefore, “the average” deviation from the mean is 0.023 97 cal/g.

For method B, we find x8 = 79.98 and sx = 0.03137 with an analogous interpretation.
◭

The empirical variance and standard deviation are arduous to compute, which is why
we use Python . For the variance, we use the method

methodeA.var()

and for the standard deviation, we use

methodA.std()

1.1.4 Other Summary Statistics

Below, we we study two alternative parameters, namely the median as the measure of
location and the interquartile range as the measure of dispersion.
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Median

Another measure of the average location is the median, which is the value at which
about half the measurement values fall below it. For example, if the median for a test
is 4.6, then half the class received a grade below 4.6. Conversely, the other half has
grades above the median.

To determine the median, we must first order the data by size:

x(1) ≤ x(2) ≤ · · · ≤ x(n)

For the data in method A, this yields

79.97; 79.98; 80.00; 80.02; 80.02; 80.02; 80.03; 80.03; 80.03; 80.04; 80.04; 80.04; 80.05

In Python , you sort the data by size as follows:

methodeA.sort_values

Then, the median of these 13 measurements is the value of the middle observation. In
this case, it is the value of the 7th observation:

79.97; 79.98; 80.00; 80.02; 80.02; 80.02; 80.03 ; 80.03; 80.03; 80.04; 80.04; 80.04; 80.05

The median of the data set from method A is therefore 80.03. 6 observations are less
than or equal to 80.03, and 6 measurement values are greater than or equal to 80.03.
In this example, the number of data points is odd. There is therefore the middle ob-
servation. If the number of data points is even, then there are effectively two middle
observations. In this case, we use the mean of the two middle observations is the
median. The data sets for method B has 8 observations. We order the data set by size
and defined as the median the average of 4th and 5th observations:

79.94; 79.95; 79.97; 79.97; 79.97 ; 79.94; 80.02; 80.03

79.97 + 79.97

2
= 79.97

The median of the data from method B is 79.97. This means half the measurement
values are less than or equal to this value, and the other half is greater than or equal
to it. The two middle observations here happen to have the same value, but this is
generally not the case.

Example 1.1.6

Using Python , we determine the median as follows for method A

methodeA.median()

and for method B

8

https://tube.switch.ch/videos/yL7W32uD0V?autoplay=1


Chapter 1 Descriptive Statistics

methodeB = Series([80.02, 79.94, 79.98, 79.97, 79.97, 80.03,

79.95, 79.97])

methodeB.median()

◭

We now have two measures of location for the middle of a data set: the arithmetic
mean and the meeting. What are the advantages of each measure? One property
of the median is its robustness. Extreme observations have less of an impact on the
median than on the arithmetic mean.

Example 1.1.7 Measuring the melting heat of ice with method A

A typo occurred with the largest observation (x9 = 80.05), and x9 = 800.5 was entered.
Then the arithmetic mean becomes

x13 = 135.44

But the median remains the same as earlier:

x(7) = 80.03

So, changing an observation greatly impacts the arithmetic mean, while the median
remains the same here – the latter is robust. ◭

Quartiles

The lower quartile is the value at which 25 % of all observations are less than or equal
to this value, and 75 % are greater than or equal to this value. Respectively, the upper
quartile is the value at which 75 % of all observations are less than or equal to this
value, and 25 % are greater than or equal to this value.

However, most data sets do not have exactly 25 % of the number of observations. Un-
fortunately, there are several different ways to handle these cases.

Example 1.1.8

Method A has n = 13 measurement points; 25 % of this number is 3.25.

• We choose the next greater value x(4) as the lower quartile. Then, a little bit more
than 25 % of the values are less than or equal to this value:

79.97; 79.98; 80.00; 80.02 ; 80.02; 80.02; 80.03; 80.03; 80.03; 80.04; 80.04; 80.04; 80.05

The lower quartile is therefore 80.02. About one quarter of the measurement
values are less than or equal to this value.
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• However, we could also choose the next smaller value, since 3.25 is closer to 3
than to 4, and then the lower quartile was 80.00.

• We could also take the mean value of the third and the fourth value, the yielded
80.01.

• We could also interpolate linearly. Then we take 0.25 of the difference of the third
and fourth value and obtain as lower quartile 80.005.

◭

There are also other variants of definitions of the lower and upper quartile. Depend-
ing on the software, different versions are implemented.

Quartiles

The lower quartile is the value, for which around 25 % of all observations are less
than or equal to it, and around 75 % are greater than or equal.

Accordingly, the upper quartile is the value, for which around 75 % of all observa-
tions are less than or equal to it, and 25 % are greater than or equal.

Here, the word “around” means “as close to as possible”.

The software Python does not have specific commands for quartiles. We can how-
ever use the more general quantile command (we will meet quantiles a little bit
later).

Example 1.1.9

For the lower quartile of method A, the command reads

methodeA.quantile(q=.25)

and so 25 % of the values are less than or equal to 80.02, and 75 % are greater than or
equal to 80.04.

For the upper quartile, we have

methodeA.quantile(q=.75)

So 75 % of the values are less than or equal to 80.04, and 25 % are greater than or equal
to 80.04.

For method B we obtain

methodeB.quantile(q=.25)

◭
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Remarks:

i. The different definitions yield different values for the quartiles as we saw in ex-
ample 1.1.8.

ii. However, most of the times the values for the quartiles according to the different
definitions are very close to each other, and their interpretation is roughly the
same.

iii. Due to robustness of the quartiles, using a different definition moves them by at
amost one value of the data series. For large data sets, this is usually irrelevant.
�

Example 1.1.10

We consider the different definitions for the quartiles, which are implemented in
Python . They are called with the option interpolation=.... For the details
of the several definitions, we refer to the help function in Ipython.

For the lower quartile of method A, we obtain

methodeA.quantile(q=.25, interpolation="linear")

methodeA.quantile(q=.25, interpolation="lower")

methodeA.quantile(q=.25, interpolation="higher")

methodeA.quantile(q=.25, interpolation="midpoint")

methodeA.quantile(q=.25, interpolation="nearest")

In this case, the different definitions yield no differences at all.

For the lower quartile of method B, we obtain

methodeB.quantile(q=.25, interpolation="linear")

methodeB.quantile(q=.25, interpolation="lower")

methodeB.quantile(q=.25, interpolation="higher")

methodeB.quantile(q=.25, interpolation="midpoint")

methodeB.quantile(q=.25, interpolation="nearest")

Here, we have very small differences, and the interpretation do not change consid-
erably. About 25 % of the values are less than or equal to 79.97 (or 79.95 or 79.96,
respectively). The values are very close to each other. ◭

11



Chapter 1 Descriptive Statistics

Interquartile Range

The interquartile range

upper quartile − lower quartile

is another measure of the data’s dispersion. It measures the length of the interval
that contains about the middle half of the observations. The smaller this measure,
the closer this half of all values is to the median and the smaller the dispersion. This
measure of dispersion is robust.

Example 1.1.11

The interquartile range with method A is

80.04− 80.02 = 0.02

q75, q25 = methodeA.quantile(q = [.75, .25])

iqr = q75 - q25

iqr

So, about half of all measurement values are within a range of length 0.02. ◭

Quantiles

The concept of quantiles allows us to generalize the concept of quartiles to any other
percentage. The 10 % quantile is thus the value at which 10 percent of the values are
less than or equal to this value and 90 % of the values are greater than or equal to it.

Quantile

The empirical α-quantile corresponds to the value at which α × 100 % of the data
points are less than or equal to this value and (1 − α)×100 % of the points are
greater than or equal to it.
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Remarks:

i. The empirical median is the empirical 50 %-quantile; the empirical 25 %-quantil
is the lower quartile; the empirical 75 %-quantile is the upper quartile.

ii. The exact definition of the empirical α-quantile is:

1

2
(x(αn) + x(αn+1)) , if α · n is an integer,

x(k) where k is the number α · n rounded up , if α · n /∈ N.

�

Example 1.1.12 Measuring the melting heat of ice with method A

We determine the median and the lower and upper quartiles based on the definition
above.

There are n = 13 measurement values, which we first have to order by size: the
smallest value is x(1) = 79.97; the third largest value x(3) = 80.00; the largest value
x(13) = 80.05. We want to determine the 25 %-quantile, the median, and the 75 %-
quantile. In the case of 25 %-quantile, we then have α = 0.25, so

α · n = 0.25 · 13 = 3.25

which is not an integer; hence we round 3.25 up to 4 and obtain for the 25 %-quantile
x(4) = 80.02. In the case of the median, we have α = 0.5, so

α · n = 0.5 · 13 = 6.5

which is not an integer; hence we round 6.5 up to 7 and obtain for the the median
x(7) = 80.03. In the case of 75 %-quantile, we have α = 0.75, so

α · n = 0.75 · 13 = 9.75

which is not an integer; hence we round 9.75 up to 10 and obtain for the 75 %-quantile
the observed value x(10) = 80.04. ◭

Example 1.1.13

We calculate the 10 %- and 70 %-quantile from method A as follows:

methodeA.quantile(q=.1)

methodeA.quantile(q=.7)

About 10 % of the measurement values are less than or equal to 79.98. Accordingly,
about 70 % of the measurement values are less than or equal to 80.03. ◭
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Example 1.1.14

A class of 24 students received the following grades on a test:

4.2, 2.3, 5.6, 4.5, 4.8, 3.9, 5.9, 2.4, 5.9, 6, 4, 3.7, 5, 5.2, 4.5, 3.6, 5, 6, 2.8, 3.3, 5.5, 4.2, 4.9, 5.1

We now use Python to calculate various quantiles:

noten = Series([4.2, 2.3, 5.6, 4.5, 4.8, 3.9, 5.9, 2.4, 5.9,

6, 4, 3.7, 5, 5.2, 4.5, 3.6, 5, 6, 2.8, 3.3,

5.5, 4.2, 4.9, 5.1])

noten.quantile(q = np.linspace(start=.2, stop=1, num=5))

So, about 20 % of the students received a 3.6 or worse. Exactly 20 % of the students is
not possible, since would mean 4.8 students. The 60 %-quantile means 60 percent of
the students received a 4.9 or worse. Hence 40 % received a 4.9 or better. ◭

Remark 1.1.3

Also here, the statements do not change much, when we say that about 20 % of the
students had 3.7 or worse.

1.1.5 Graphical Methods

Histogram

A so-called histogram gives us a graphical overview of the values that occur. His-
tograms help answer the question of what value range has a particularly high number
of data points. If there are many data points, then it does not make sense to observe
each value individually. We form so-called bins, each of which represents a section of
the observation area. To draw a histogram, we build classes (for the sake of conve-
nience, of equal width) and count the number of observations fall in each class. There
are different types of histograms; here, we only work with the most common type.

Example 1.1.15

In Figure 1.1, we see a histogram of the results of an IQ test involving 200 people.

• The classes’ width was set to 10 IQ points; it is the same for every class.

• The bars’ height indicates the number of people whose score falls within the
respective class. For example, approx. 14 people are in the class of IQ points
between 120 and 130.
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Verteilung der Punkte in einem IQ−Test

Punkte im IQ−Test
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Figure 1.1: Histogram of the IQ-test results of 200 persons.

◭

Ste-by-step construction of a histogram:

• Divide the volume of data into classes. There are a few rules of thumb available
to set the number of classes or rectangles: For fewer than 50 measurements, use
5 to 7 classes; for more than 250 measurements, choose 10 to 20 classes1. In the
simplest case, all classes have the same width, although this is not necessary.

• We then draw a bar for each class, whose height is proportional to the number
of observations in that class.

• We divide the number of observations in a class by the total number of observa-
tions, which gives us the percentage of a class out of the total observation.

Example 1.1.16

For method A, the histogram of is given in Fifure 1.2. It was generated using the
following code:

import pandas as pd

from pandas import DataFrame, Series

import matplotlib.pyplot as plt

1If necessary, we can also calculate the number of classes k based on Sturges’ formula: k = 1 +
log2 n = 1 + 3.3 · log10 n, where n is the number of measurements.
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methodA = Series([79.98, 80.04, 80.02, 80.04, 80.03, 80.03,

80.04, 79.97, 80.05, 80.03, 80.02, 80.00, 80.02])

methodB = Series([80.02, 79.94, 79.98, 79.97, 79.97, 80.03,

79.95, 79.97])

methodA.plot(kind="hist", edgecolor="black")

plt.title("Histogram of method A")

plt.xlabel("methodA")

plt.ylabel("Frequency")

plt.show()

79.97 79.98 79.99 80.00 80.01 80.02 80.03 80.04 80.05

methodA

0.0

0.5

1.0
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Histogram of method A

Figure 1.2: Histogram of the melting heat measured with method A

Remarks:

i. pandas itself has no graphical capabilities, but falls back on the library matplot-
lib.

ii. We used the general pandasmethod plot and then choose the option ...(kind
= "hist",...) for histogram.

iii. pandas chooses by default 10 intervals (bins). That can, for example, be changed
to 7 bins ...(kind="hist", ...,bins=7).

iv. Meaning of the numbers (frequency): Because 10 bins were chosen and the data
values lie in the intervall [79.97, 80.05], then the bin width is (80.05− 79.97)/10 =
0.008.

The 1st class, from 79.97 to 79.978, accounts for the observations with values 79.97;
the 2nd class, 79.98; etc.
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v. What happens, if a value is on the edge of a bin? The value could be accounted
to the left or to the right bin (but not to both). Depending on the choice, the
histogram would look a little different. Such considerations have little incidence
on large data sets.

vi. The pandas command also allows from setting the number and width of classes,
changing the labels, etc. (see the exercises). �

◭

Example 1.1.17

In the histogram above, the height of the bars corresponds directly to the observations
in a class. It is often better and clearer to choose the height of the bars such that the
surface of each bar corresponds to the respective observations’ percentage out of the
total number of observations. The total area of the bars must then be equal to 1. Then
we speak dann of a normed histogram, in which the height of the bars represent the
density of the values. This is shown in Figure 1.3 for method A. It was plotted using
the option density=True:

methodeA.plot(kind="hist", density=True, edgecolor="black")

plt.title("Normed histogram of method A")

plt.xlabel("methodA")

plt.ylabel("Density")

plt.show()

The vertical axis now shows the densities. We can thus read that more than (80.018−
80.026) · 28.846 = 0.23, so about 23 % of the data is between 80.018 and 80.026.

The bar height is determined by multiplying the number of observations included
in the bar by 1

n , where n is the total number of observations, and then dividing this
result by the bar width. In our example, 3 observations lie in the interval 80.018 und
80.026, then height of this bar is

1
13 · 3

0.008
= 28.8462

◭

The normed histogram has the advantage that measurements with different volumes
are easier to compare. So, if we were to now measure 30 observations with method A,
the distributions of measurement values into their respective classes would be easier
to compare with the densities.
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Figure 1.3: Normed histogram of method A

Box Plot

A box plot (see Figure 1.4) consists of

• a rectangle whose height is bound by the empirical 25 %- and 75 %-quantile,

• lines leading from this rectangle to the smallest and largest “normal” values
(based on the definition, a “normal” value is at most 1.5 times the interquartile
range away from the two aforementioned quartiles),

• a horizontal line for the median,

• small circles marking the outliers.

Example 1.1.18

The boxplot of method A looks as follows:

methodeA.plot(kind="box", title="Boxplot Methode A")

◭

Remarks:

i. Half of the observations are between the upper quartile, 80.04, and the lower
quartile, 80.02, with an interquartile range of 0.02.

ii. The median is at 80.03.

iii. The “normal” range of values is between 80.00 and 80.05.
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Figure 1.4: Box Plot

None

79.97

79.98

79.99

80.00

80.01

80.02

80.03

80.04

80.05

Boxplot of method A

Figure 1.5: Boxplot of method A

iv. We have two outliers, 79.97 and 79.98.

v. We had already calculated points i) and ii) when dealing with the quantiles. The
box plot thus represents our calculations graphically. �

So, the box plot is primarily suitable when comparing the distributions of the data in
different groups (which generally correspond to different test conditions).
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Example 1.1.19

In our introductory example, we used two methods to determine the melting heat.
We can also contrast the box plots and compare the methods with one another, see
Figure 1.6. It was produced by creating from the two Series a DataFrame with the
name methode and calling its method plot.

methode = DataFrame({

"methodeA": methodeA,

"methodeB": methodeB

})

methode.plot(kind="box", title="Boxplot von Methode A und B")

◭

methodA methodB

79.94

79.96

79.98

80.00

80.02

80.04

Boxplot of method A and B

Figure 1.6: Boxplots for the two methods to determine the melting heat of ice.

Remarks:

i. Method A produces larger values than method B, since the median from A is
larger.

ii. The data from method A has less dispersion than the data from method B, since
the rectangle is smaller (interquartile range!). �
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Empirical Cumulative Distribution Function

Another graphical representation of the data comes through the empirical cumulative
distribution function. It has the advantage over a histogram of making the median very
easy to read.

The empirical cumulative distribution function Fn(·) is a step function generated as fol-
lows: The function is equal to zero to the left of x(1), and at every x(i) a jump occurs
whose height is 1/n (if a value occurs several times, the jump’s height is the corre-
sponding multiple of 1/n). This procedure is executed tangibly in the following exam-
ple.

Example 1.1.20 Method A for melting heat

Figure 1.7 plots the empirical cumulative distribution function of method A. It is
constructed as follows:

• To the left of 79.97, the function is 0, since there are no smaller observed values.

• At 79.97, the function jumps to n = 1/13 ≈ 0.077.

• The function then stays constant until 80.00, since there are no other observed
values before then. At 80.00, the function jumps up again by 0.077, because
there is a measurement value there.

• At 80.02, the function jumps up again by 3 · 0.077, because there are 3 observed
values there etc.

• At 80.05, the function jumps one last time, and the function takes the value 1.

◭

What can we discern from the cumulative distribution function?

Example 1.1.21

• At 0.5 along the vertical axis, we have added up exactly half of all values, see
Figure 1.8. If we draw a horizontal line from 0.5 (see the green line in Figure
1.8), it crosses the cumulative distribution function at 80.03, which matches the
median exactly.

• Where the cumulative function makes a high jump, it has many observed values.
That means most observed values here are between 80.02 and 80.04. But the
values match the lower and upper quartiles exactly. The function is compared
to the associated box plot.

◭
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Figure 1.7: Empirical cumulative distribution function of the measurements for the melting heat of
ice using method A.
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Figure 1.8: Empirical cumulative distribution function of the measurement of the melting heat of
method A.

General

The empirical cumulative distribution function is defined as

Fn(a) =
1

n
Anzahl{i | xi ≤ a}.
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Example 1.1.22

With Python , the cumulative distribution function in Figure 1.8 can be plotted in the
following manner:

methodeA.plot(kind="hist", cumulative=True, histtype="step",

density=True, bins=8, edgecolor="black")

Strictly speaking, this is a cumulative histogram, so it depends on the number and
width of the bins. It does not correspond exactly our definition of a cumulative distri-
bution function, but we do not go into these details here. ◭

1.2 Descriptive Statistics of Two-Dimensional Data

With two-dimensional data, two different quantities are measured on each test object.
For example, the height and weight is measured on each person within a group.

Example 1.2.1 Wine Consumption and Mortality

As an example, let us consider a data set (see Table 1.2) that includes the average
wine consumption (in liters per person per year) and the death rate (mortality) from
heart and cardiovascular diseases (number of deaths per 1000 people aged 55 to 64)
in 18 industrialized countries 2. The question arises of whether this data suggests
there is a relationship between the death rate from cardiovascular disease and wine
consumption. A quick look at the table shows a higher wine consumption seems to
lead to fewer deaths due to heart and cardiovascular diseases. ◭

1.2.1 Graphical Representation: Scatter Plot

Graphical representation is an important step in the study of two-dimensional data,
usually using a so-called scatter plot. This involves interpreting and representing two
measurements in each case as coordinates of points in a coordinate system.

2A. S. St. Leger, A. L. Cochrane, and F. Moore, “Factors Associated with Cardiac Mortality in Devel-
oped Countries with Particular Reference to the Consumption of Wine.“ Lancet, 1979
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Country Wine consumption Mortality from heart disease

Norway 2.8 6.2

Scotland 3.2 9.0

Great Britain 3.2 7.1

Ireland 3.4 6.8

Finland 4.3 10.2

Canada 4.9 7.8

United States 5.1 9.3

Netherlands 5.2 5.9

New Zealand 5.9 8.9

Denmark 5.9 5.5

Sweden 6.6 7.1

Australia 8.3 9.1

Belgium 12.6 5.1

Germany 15.1 4.7

Austria 25.1 4.7

Switzerland 33.1 3.1

Italy 75.9 3.2

France 75.9 2.1

Table 1.2: Wine consumption (liters per person per year) and mortality from cardiovascular disease
(deaths per 1000) in 18 countries.

Example 1.2.2

In our example, a country represents an experimental unit, and the parameters “wine
consumption” x1, . . . , x18 and “mortality” y1, . . . , y18 are measured. If we write the
data in the format (x1, y1), . . . , (x18, y18), we are primarily interested in the relation-
ships and dependencies between the variables x and y. The scatter plot shows the de-
pendencies between the two measurement quantities, representing the data as points
on the plane: The i-th observation (i-th country) corresponds to the point with co-
ordinates (xi, yi). Figure 1.9 displays the scatter plot for the measurement quanti-
ties “wine consumption” (x1, x2, . . . , x18) and “mortality” (y1, y2, . . . , y18). We see a
monotonously decreasing relationship: Countries with high wine consumption tend
to have a lower mortality rates from heart and cardiovascular diseases.

The scatterplot in Figure 1.9 was created in Python as follows.

import pandas as pd

from pandas import DataFrame, Series

import numpy as np

mort = DataFrame({

"wine": ([2.8, 3.2, 3.2, 3.4, 4.3, 4.9, 5.1, 5.2, 5.9, 5.9,
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6.6, 8.3, 12.6, 15.1, 25.1, 33.1, 75.9, 75.9]),

"mor": ([6.2, 9.0, 7.1, 6.8, 10.2, 7.8, 9.3, 5.9, 8.9, 5.5,

7.1, 9.1, 5.1, 4.7, 4.7, 3.1, 3.2, 2.1])

})

mort.plot(kind="scatter", x="wine", y="mor")

plt.xlabel("Wine consumption (liter per person per year)")

plt.ylabel("Mortality")

plt.show()

◭
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Figure 1.9: Scatter plot of the mortality and the wine consumption in 18 industrialized countries.

Remarks:

i. The conclusion that elevated one consumption is health is rash and supposedly
false. It appears that a higher wine consumption leads to fewer deaths due to
heart and cardiovascular diseases. The influence of the higher wine consumption
on other organs (e.g. the liver) or on the number of traffic accidents is not studied
here.

ii. Although a relationship between wine consumption and mortality can be sur-
mised from the scatterplot, a causal relationship does not necessarily exist between
the two quantities. �
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1.2.2 Simple Linear Regression

In the example above, we were able to determine a negative dependence (the more...
the less...) between mortality and wine consumption. Such a dependency can often
be assumed to be very simple, namely linear.

Example 1.2.3 Relationship between the number of pages and the price of a Book

Let us now explain the simple linear regression model with a fictitious example. The
thicker the novel (hardcover), the more expensive it generally is. So, there is a relation-
ship between the number of pages x and the book’s price y. We go into a bookstore
and take 10 novels of different thicknesses. We thus take one book each with 50, 100,
150, . . . , 450, 500 pages. We make a note of each book’s number of pages and price.
Using this data, the create Table 1.3.

The table does make it evident that the books tend to cost more. If we had a formula
for the relationship between the book price and the number of pages, we would be
able to predict the price of books we had not observed based on their page numbers.
So, how much would a book with 375 pages likely cost? Or we could find out how
much a book with “zero” pages with cost. This would refer to the publisher’s basic
costs incurred regardless of the number of pages: binding, administrative expenses
for every book, etc. How could we describe this relationship with the formula? The
scatter plot in Figure 1.10 distinctly illustrates this relationship graphically.

book = DataFrame({

"pages" : np.linspace(50,500,10),

"price" : [6.4, 9.5, 15.6, 15.1, 17.8, 23.4,

23.4, 22.5, 26.1, 29.1]

})

book.plot(kind="scatter", x="pages", y="price")

plt.xlabel("Pages")

plt.ylabel("Price")

plt.show()

At first glance, a straight line seems to fit the data quite well. Such a line would have
the format

y = a + bx

where y is the book’s price and x its number of pages. Parameter a then describes the
publisher’s basic costs, and parameter b refers to the cost per page. ◭
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Number of pages Book price (CHF)

Book 1 50 6.4

Book 2 100 9.5

Book 3 150 15.6

Book 4 200 15.1

Book 5 250 17.8

Book 6 300 23.4

Book 7 350 23.4

Book 8 400 22.5

Book 9 450 26.1

Book 10 500 29.1

Table 1.3: Relationship between book price and number of pages (fictitious).
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Figure 1.10: Scatter plot of the number of pages and book price.

Least Squares Method

Let us try to trace a line through all points in Figure 1.10 using a ruler. We can deter-
mine this is not possible (see Figure 1.11). Therefore, the points are only approximately
on a straight line.

We then wonder: “How can we find a line that fits all points as well as possible?” This
leads directly to the next question: What does “as well as possible” mean? To find
a measure to decide how well the line fits brings up similar difficulties as with the
determination of the variance.

We could choose the line such that when we add up the vertical differences between
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Figure 1.11: Line through the scatter plot

each observation and the line (see Figure 1.12), we assume a small sum of these dis-
tances indicates a good fit.

We designate the vertical difference between an observed point (xi, yi) and the line
(the point on the line having coordinates (xi, a + bxi)) as the residual:

ri = yi − (a + bxi) = yi − a − bxi

For our example, the residuals r6 and r8 for this line are represented in Figure 1.12.
Residual r6 is positive, since the point is above the line. Correspondingly, r8 < 0.
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r6 > 0

r8 < 0

Figure 1.12: Residuals

We would like to determine the line y = a + bx such that the sum

r1 + r2 + . . . + rn = ∑
i

ri
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is minimized. But this method has a serious weakness: If half the points are far above
the line and the other half is far below it, then the sum of the deviations (residuals)
can be close to zero, even though the line fits the data points very poorly. The posi-
tive deviations and the negative deviations simply cancel each other out. So, we must
eliminate the deviations’ signs before adding them. One option consists in adding up
the absolute values, so ∑i |ri|, and minimizing this sum. However, since absolute val-
ues can be rather inconvenient to work with (for example, when trying to derive ex-
pressions with absolute values), so we turn to another possibility. It involves adding
up the squares of the deviations, so

r2
1 + r2

2 + · · ·+ r2
n = ∑

i

r2
i

The parameters a and b should be chosen so as to minimize the sum. The latter
method is generally accepted, as it is much easier to work with than the absolute
values. Hence a line optimally fits (according to our quality criteria) the points if the
sum of the squares of the vertical deviations is minimized. This procedure is known
as the least squares method. In our case, Python gives us the values a = 6.04 and
b = 0.047.

Example 1.2.4

In our case, with Python we obtain the values a = 6.04 und b = 0.047.

b, a = np.polyfit(book["pages"], book["price"], deg=1)

print(a, b)

The linear equation is
y = 6.04 + 0.04673x

Therefore, the publisher’s basic costs are about 6 Swiss francs. And it charges about
5 centimes per page. ◭

Remarks:

i. The command

np.polyfit(book["pages"], book["price"], deg=1)

from numpy fits a polynomial of degree 1 (linear function) to the data. The output
consists of two values: the first is the slope of the line, the second is the intercept.

ii. This is also called the regression line. �
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Example 1.2.5

Based on this model, how much would a 375-page book cost? We insert x = 375 in
the linear equation above and obtain

y = 6.04+ 0.04673 · 375 ≈ 23.60

So, the book would cost about CHF 23.60. This model nevertheless only has limited
validity. One has to be especially careful with extrapolation. We could calculate how
much a book with a million pages would cost, but such amount certainly no longer
matches reality.

The line in Figure 1.11 on page 28 is plotted in Python as follows:

book.plot(kind="scatter", x="pages", y="price")

b, a = np.polyfit(book["pages"], book["price"], deg=1)

x = np.linspace(book["pages"].min() ,book["pages"].max())

plt.plot(x, a+b*x, c="orange")

plt.xlabel("Pages")

plt.ylabel("Price")

plt.show()

The command

x = np.linspace(book["pages"].min(), book["pages"].max())

generates a vector x of length 50. The first component of this vector is minimal value
of pages in the Dataframe book; the last component is its maximal value. ◭

How does Python Calculate the Parameters a and b?

Parameters a and b are determined as follows:

Parameters a and b should minimize the following expression (least squares
method):

n

∑
i=1

(yi − (a + bxi))
2
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The solution to this optimization problem yields

b̂ =
∑

n
i=1(yi − y)(xi − x)

∑
n
i=1(xi − x)2

â = y − b̂ x

where x and y are the corresponding averages. â and b̂ are the estimations of
parameters a and b, so the values for which ∑

n
i=1(yi − (a + bxi))

2 is the smallest.

Remarks:

i. We are not establishing here how to calculate a and b. Just to give an idea: Since

∑
i

r2
i =

n

∑
i=1

(yi − (a + bxi))
2

must be minimized, the derivative of ∑i r2
i with respect to a and with respect to b

must be equal to 0. So, we get a system of equations consisting of two equations
and two unknowns:

∂

∂a

n

∑
i=1

(yi − (a + bxi))
2 =

n

∑
i=1

−2 (yi − a − bxi)
!
= 0

∂

∂b

n

∑
i=1

(yi − (a + bxi))
2 =

n

∑
i=1

−2 (yi − a − bxi) · xi
!
= 0

The algebraic manipulations leading to the estimations of a and b become rather
long and are not derived here.

ii. Here, â and b̂ are always calculated with Python. �

Example 1.2.6

It can be conjectured that a relationship exists between the height of fathers and the
height of their sons. In 1900, the British statistician Karl Pearson charted the height of
10 (in reality, it was 1078) randomly selected men against the height of their fathers.
And he obtained the data in Table 1.4.

There appears to be an actual relationship here: the taller the father, the taller the son.
When we plot the scatter plot (see Figure 1.13), we see a (possible) linear relationship
exists: The point cloud “follows” the straight line y = 0.445x+ 94.7; these parameters
were calculated from the data using the least squares method.
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So, for a father’s height of 180 cm, which does not appear in Table 1.4, we can calculate
the expected value of the son’s height.

y = 0.445 · 180+ 94.7 ≈ 175 cm

However, we must be careful not to use this formula where it is not applicable. For
example, we obtain for x = 0 a value of 94.7. But what does that mean? If the father
is 0 cm high, then the son would be about 95 cm high, according to this model. But
that is nonsensical. ◭

Father’s height 152 157 163 165 168 170 173 178 183 188

Son’s height 162 166 168 166 170 170 171 173 178 178

Table 1.4: Height comparison of fathers and sons.
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Figure 1.13: Scatter plot of father and son sizes

Example 1.2.7

The following table establishes a relationship between the numbers of traffic fatalities
occurring in 1988 and 1989 in twelve counties (the counties exhibit more or less the
same population size).

The table does not make a clear relationship evident. Let us consider the scatter plot
in Figure 1.14. We can see there is no relationship. But this was also to be expected
if we could reasonably assume there is no relationship between the traffic fatalities
of different individual counties. Figure 1.14 charts the regression line. We can calcu-
late and plot it. However, this makes not sense, since there is no linear relationship
between the measurement quantities.

In the next subsection, we will study a quantity that allows us to make a declaration
about how strong the linear relationship is between two measurement quantities. ◭
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County 1 2 3 4 5 6 7 8 9 10 11 12

1988 traffic fatalities 121 96 85 113 102 118 90 84 107 112 95 101

1989 traffic fatalities 104 91 101 110 117 108 96 102 114 96 88 106

Table 1.5: Traffic fatalities in two consecutive years.
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Figure 1.14: Traffic deaths

Example 1.2.8

As another example, let us consider again the survey of the relationship between wine
consumption and the death rate. We will take as a basis for the data the linear model

y = a + bx

where x is the annual wine consumption per person and y is the mortality per 1000
people. We then can estimate the parameters a and b based on the data points, using
the least squares method, and we obtain the regression line

y = 7.68655 − 0.07608x

Let us however consider the scatter plot with the regression line (see Figure 1.15);
we determine the relationship between the measurement quantities is not linear. The
scatter plot is more suggestive of a hyperbolic function.

So, the regression line says little here about the true relation. ◭

We can (almost) always determine the regression line. But in the last two examples,
we saw that the regression line provides very little information about the actual dis-
tribution of points in the scatter plot. There are two reasons for this:
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Figure 1.15: Regression line between wine consumption and death rate

• The points do not seem to follow any rule at all

• The points seem to follow a nonlinear rule

But how can we determine whether the data has a linear relationship or not? One
possibility is sure to consider the situation graphically, as we just saw. But we can
also give a value that describes the relationship numerically.

1.2.3 Empirical Covariance and Correlation

To quantify the linear dependence of two quantities, the empirical correlation coeffi-
cient r is the most common summary statistic (also written ρ̂ ).

Empirical Covariance

We first introduce the notion of covariance.

Empirical Covariance

For the samples (x1, y1), (x2, y2), . . . (xn, yn) the empirical covariance is defined as

covxy =
∑

n
i=1(xi − x)(yi − y)

n − 1
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If x = y, then we have

covxx =
∑

n
i=1(xi − x)(xi − x)

n − 1

and this is exactly the empirical variance s2
x of x:

covxx = varx = s2
x

Now we want to convince ourselves that indeed the covariance captures a linear rela-
tion.

Example 1.2.9

In Figure 1.16 you see a couple of data points which more or less follow a straight
line. You also see the lines parallel to the coordinate axes x = x and y = y.

For alignment, we subtract the mean value x from the x coordinates and the mean
value y from the y coordinates. Then, we obtain Figure 1.17.

The empirical covariance for these points now reads

covx∗y∗ =
∑

n
i=1 x∗i y∗i
n − 1

Hence, in the numerator, all products x∗i y∗i are summed up. In quadrants I and III,
these products are positive, in quadrants II and IV they are negative.

Since in our example almost all ponts lie in quadrants I and III, covx∗y∗ becomes posi-
tive:

covx∗y∗ > 0

If the points lie on a descending line, then the points are mostly in quadrants II and
IV. The value of covx∗y∗ is then negative:

covx∗y∗ < 0

Now what happens if the points show no linear relation (see Figure 1.18?

In this case, the products x∗i y∗i sum up to approximately zero, since roughly half of
the points are in quadrants I and III (positive products), and roughly the other half
lies in qudrants II and IV, being of similar magnitude in absolute value. Then, we
have

covx∗y∗ ≈ 0

How does it look like for a quadratic relation (see Figure 1.19?
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Also here, the products on the left and on the right of the y axis approximately cancel
out. We have

covx∗y∗ ≈ 0

Note that this argument depends on the mirror symmetry of the parabola with respect
to the y-axis. If there is a non mirror symmetric, non-linear (e.g., cubic) relationship,
then the covariance does not have to sum up to zero. However, such relationships
can also be interpreted as approximately linear.

The covariance essentially recognizes linear relationships. ◭
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Figure 1.16: Points lying close to a straight line
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Figure 1.17: The mean values were subtracted from the coordinates.

When there is no linear relation, then the covariance can be 0, although there is a non-
linear relationship. We should never rely only on the value of the covariance, instead
we should always look at the plots to check for non-linear relationships.
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Figure 1.18: Points whose coordinates show no relation
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Figure 1.19: Points close to a parabola

Example 1.2.10

Benzopyrene is a cancerogene hydrocarbon molecule, which is the product of incom-
plete burnings. A source of Benzopyrene and carbon monoxide are car exhausts.
Colucci and Begeman (1971) analyzed 16 air samples, which were taken at the Herald
Square in Manhattan.

They recorded the carbon monoxide concentration (in parts per million) and the ben-
zopyrene concentration (in microgram per 1000 cubic meter) for each sample. In the
file Herald.dat, the data are listed:

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from pandas import Series, DataFrame

df = pd.read_table("Herald.dat")

print(df.head())
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Now we represent the data graphically in Figure 1.20.

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import pandas as pd

4 from pandas import Series, DataFrame

5

6 df = pd.read_table("Herald.dat")

7

8 df.plot(kind="scatter", x="CO", y="Benzoa")

9

10 plt.plot((2.5, 20), (df["Benzoa"].mean(), df["Benzoa"].mean()),

c="orange")

11

12 plt.plot((df["CO"].mean(), df["CO"].mean()), (0, 10), c="orange")

13

14 plt.ylabel("Benzoapyrene")

15 plt.show()

With Python we can now calculate the empirical covariance of the Herald Square
pairs.

df.cov()

The Output of Python is a so-called covariance matrix. The only value important to
us is in row CO and column Benzoa (or vice versa). Thus, we have

covdf["CO"]df["Benzoa"] = 5.51

The value 25.8 in the covariance matrix corresponds to the variance of CO. Accord-
ingly, the value 9.33 is the variance of Benzoa. ◭

The problem with the covariance is that it is hard to be interpreted. How far from
zero does it have to be in order to indicate a relationship? Also, the covariance in
Example 1.2.10 has the unit

ppm · µg/1000m3

which is almost impossible to interpret.

In order to remedy this, we introduce the empirical correlation coefficient as a new nor-
malized and dimensionless quantity to measure a linear relationship between sample
pairs (xi, yi).

Empirical Correlation Coefficient

The most used measure for the linear relationship between two quantities is the em-
pirical correlation coefficient or Pearson correlation coefficient rxy (also denoted with r or
ρ̂).
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Figure 1.20: Scatter diagram of benzopyrene versus carcon monoxide

It is defined by standardization of the covariance. This means that the covariance is
divided by the standard deviations of x and that of y. Then the correlation coefficient
takes values between −1 and 1, where a value of 0 indicates no linear relationship.

Empirical Correlation Coefficient

The empirical correlation coefficient r for the coordinate pairs (xi, yi) is defined
as follows:

rxy =
covxy

sx · sy
=

∑
n
i=1(xi − x)(yi − y)

(n − 1) · sx · sy

where sx and sy are the empirical standard deviations of the samples xi and yi.

The empirical correlation coefficient is a dimensionless number between −1 and +1
that measures the strength and direction of the linear dependence between the x and y
data. The empirical correlation has the following properties:

1. If rxy = +1, then the points lie on an increasing straight line (y = a + bx with
a ∈ R and b > 0) and vice versa.

2. If rxy = −1, then the points lie on a decreasing straight line (y = a + bx with
a ∈ R and b < 0) and vice versa.

3. If x and y are independent of each other (i.e., there is no relationship), then
rxy ≈ 0.

The converse is not generally true: r = 0 does not mean x and y are independent
of each other (see Figure 1.21 on page 41)
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One direction of the first two properties are easy to understand: if we substitute yi =
a + bxi and y = a + bx into the expression for the correlation coefficient, then we
obtain

r =
∑

n
i=1(xi − x)(bxi + a − (bx + a))√

(∑n
i=1(xi − x)2) · (∑n

i=1(bxi + a − (bx + a))2)

=
b · ∑

n
i=1(xi − x)(xi − x)

|b| ·
√
(∑n

i=1(xi − x)2) · (∑n
i=1(xi − x)2)

= sign(b)

where the sign of a number is defined as

sign(b) =





1 if b > 0

0 if b = 0

−1 if b < 0

However, r should never be calculated without paying attention to the scatter plot,
since the same value of rxy can result from very different structures. See Figure
1.21 on the following page.

Example 1.2.11

In our example about page numbers and prices of books, Python gives us

book.corr().iloc[0,1]

the value 0.968. So, it is very close to 1, hence there is a strong linear relationship.
Furthermore, the correlation coefficient is positive, hence the slope of the regression
line is positive, which corresponds to a “the more, the more”, thus a positive linear
relationship. ◭

Remark 1.2.1

The command

book.corr()

is more general and produces the so-called correlation matrix.

Example 1.2.12

Also in the example of the heights of fathers and sons, we expect a high correlation
coefficient. We obtain 0.973. ◭
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Example 1.2.13

With the traffic accidents, there is no relationship, and we expect a correlation coeffi-
cient close to zero. It is 0.386. ◭

Example 1.2.14

In the wine consumption case, we expect a negative correlation coefficient, since with
increasing wine consumption we have decreasing mortality. It is −0.746. Without
representing the data in the scatter plot, this value would erroneously lead to the
conclusion there is a strong negative linear relationship. ◭

Example 1.2.15

Figure 1.21 represents 21 different data sets, consisting of as many pairs of observa-
tions (xi, yi) with the corresponding points in the scatter plot. The associated empiri-
cal correlation appears over each data set.

A perfectly linear relationship has the empirical correlation +1 or −1 (depending on
whether the slope is positive or negative; see the second row in Figure 1.21). The
more the points are scattered around the linear relationship, the small the empirical
correlation’s magnitude (see the first row).

Since the empirical correlation only measures the linear relationship, there can be a
(nonlinear) relationship between the two variables x and y even if the empirical cor-
relation is zero (see the bottom row in Figure 1.21). ◭

Figure 1.21: 21 different data sets and their empirical correlation coefficients.
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Example 1.2.16

For the dataset Herald the correlation coefficient is calculated as follows

df.corr()

We obtain the correlation matrix. Again, the entry in row CO and column Benzoa is
essential. We have

rdf["CO"],df["Benzoa"] = 0.3551

Although the correlation is only moderate, there is a physical explanation for a cor-
relation, since both chemicals are the product of incomplete combustion. Typically, a
correlation of ≈ 0.3 visually yields a slight impression that y increases if x is increased.
However, the points scatter rather strongly. ◭

Educational Objectives

You are able to . . .

� explain and interpret the most important methods of descriptive statistics

� calculate the following quantities: arithmetic mean, standard deviation, variance,
quantile, median, covariance, and correlation coefficient.

� explain the basic idea of simple linear regression; to define the regression model,
to interpret the coefficients, and to explain how these are estimated.

� explain the construction of the following graphical representations: histogram, box
plot, empirical cumulative distribution function, and scatter plot.

Computer-based Educational Objectives

You are able to . . .

� read data from a file with the help of pandas as a Series or DataFrame.

� calculate the mean and the empirical standard deviation using the pandas-methods
var(), resp. std().

� find the empirical median and the quantiles with the pandas-methods median()
and quantile and from there the interquartile range.

� plot a histogram with the pandas-method plot(kind="hist").

� produce a boxplot for some dataset using the pandas-method plot(kind="box").
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� create a scatter plot for a two-dimensional data set with the help of the pandas-
method plot(kind=’scatter’).

� determine the coefficients of a simple linear regression model using the numpy-
method np.polyfit().

� calculate the empirical covariance and the correlation coefficienten for two quanti-
ties with the pandas-methods cov() and corr().
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