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1 Preambule

Theory box

Lorem ipsum dolor sit amet.

Formula box
Lorem ipsum dolor sit amet.

Lab/examples box

Lorem ipsum dolor sit amet.

2 Fluids as energy carriers

2.1 Fluid state variables and properties

Formulas
2.1.1 State variables

Density

ρ ≜ m

V

[
kg

m3

]
(1)

Specific volume

v ≜ V

m
=

1

ρ

[
m3

kg

]
(2)

2.1.2 Viscosity

Kinematic viscosity

ν ≜ η

ρ

[
m2

s

]
(3)

Dynamic viscosity

η ≜ ν · ρ
[
Pa · s = Ns

m2
=

kg

m · s

]
(4)

2.1.3 Real and ideal fluid

Real fluid Ideal fluid
variable density (∆ρ ̸= 0) incompressible (∆ρ = 0)
friction (η > 0, ν > 0) frictionless (η = 0, ν = 0)

2.1.4 Compressibility

Mach number
M ≜ u

c
(5)

where:
• M is the Mach number [-]

M ≲ 0.3: incompressible flow
• u is the flow velocity [m/s]
• c is the speed of sound in the fluid [m/s]

and:
• c20

◦

w = 1484 m/s
• c20

◦

a = 343 m/s

2.2 Laminar and turbulent flow

Reynolds number

Re =
v · L
ν

=
ρ · v · L

η
[−] (6)

where:
• v is the mean flow velocity [m/s]
• L is the characteristic length [m]

Re values
• Re < 2000: laminar flow
• Re ≃ 2300: critical point
• 2000 < Re < 4000: transitional regime
• Re ≥ 4000: turbulent flow

2.3 Pressure and velocity

Pressure
2.3.1 Total pressure

Added to the static pressure pstat, there is also the
dynamic pressure pdyn and the total pressure ptot:

ptot = pstat + pdyn = ρ

(
gh+

v2

2

)
(7)

2.3.2 Absolute pressure

Absolute pressure pabs refers to the pressure in a
vacuum pvaacum = 0 Pa, while relative pressure prel
can refer to any chosen reference pressure pref .

prel = pabs − pref ⇐⇒ pabs = prel + pref ≥ 0 (8)

2.3.3 Velocity

Velocity is a vector quantity:

v⃗ = (vxvyvz) (9)

The magnitude is given by:

v =
√
v2x + v2y + v2z (10)

2.4 Curvature pressure formula

Deflection motion of a fluid element around
a blunt body

dp

dn
= −ρ · v

2

R
(11)



Matteo Frongillo Energy conservation 2

3 Mass conservation

3.1 Continuity equation / Mass conservation

Continuity equation

3.1.1 Steady mass-flow

ṁin = ṁout (12)

3.1.2 Incompressible fluid

ṁ = ρ V̇ =⇒ V̇in = V̇out (13)

3.1.3 Streamline theory

V̇ = v̄ A =⇒ v̄in Ain = v̄out Aout (14)

4 Energy conservation

4.1 Fluid mechanical energy conservation

Derivation of the Bernoulli equation

ṁ1

(
p1
ρ

+
v21
2

+ gz1

)
= ṁ2

(
p2
ρ

+
v22
2

+ gz2

)
(15)

This derivation is based on the assumption that the
system has:

• steady flow
• ideal fluid
• adiabatic process

• no work in or out
of the system

• 1D streamline flow

4.1.1 Energy flow
dE

dt
=

∑
P +

∑
Q̇︸ ︷︷ ︸

Energy flow
across system boundary

+
∑
in

[
ṁ↙ ·

(
h↙ +

v2↙

2
+ gz↙

)]
︸ ︷︷ ︸

Energy transfer
mass in

−
∑
out

[
ṁ↗ ·

(
h↗ +

v2↗

2
+ gz↗

)]
︸ ︷︷ ︸

Energy transfer
mass out

(16)

4.1.2 Outflow formula according to Torricelli

gz1 =
v22
2

=⇒ v2 =
√
2g∆z (17)

4.2 Bernoulli equation

Specific energy equation

p1
ρ
+

v21
2
+gz1 =

p2
ρ
+

v22
2
+gz2 = const.

[
J

kg

]
(18)

4.2.1 Alternative forms

Pressure equation

p1 +
ρv21
2

+ ρgz1 = p2 +
ρv22
2

+ ρgz2 = const. [Pa]

(19)
Height equation

p1
ρg

+
v21
2g

+ z1 =
p2
ρg

+
v22
2g

+ z2 = const. [m] (20)

True energy equation

The Bernoulli equation states that the sum of these
energies is constant along a streamline.

4.2.2 Pressure energy

Ep = m · p
ρ
[J ] (21)

4.2.3 Kinetic energy

Ekin = m · v
2

2
[J ] (22)

4.2.4 Potential energy

Epot = m · g · z [J ] (23)

4.2.5 Energy conservation
Ep,1 + Ekin,1 + Epot,1 = Ep,2 + Ekin,2 + Epot,2

m

(
p1
ρ

+
v21
2

+ gz1

)
= m

(
p2
ρ

+
v22
2

+ gz2

)
(24)

4.3 Hydrostatics

Fundamental law of hydrostatics

p = p0 + ρgh = const. [Pa] (25)

derived from:

p = p0 +
Fg

A
= p0 +

mg

A
= p0 +

ρhAg

A
(26)
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Venturi effect

4.4 Venturi effect experiment

4.4.1 Height – pressure difference at V̇ = 6 l/s

4.4.2 Relative static pressure prel

prel = phydro = ρg (h− href) (27)
4.4.3 Dynamic pressure pdyn

pdyn = ρ
v2

2
(28)

4.4.4 Dynamic pressure v

v =
V̇

A
(29)

4.4.5 Pressure difference ∆p

∆p = pNoFric − preal =⇒ pV ∼ v2 (30)

Venturi effect
Measurament points

Measurament shear flow

Just to not forget

Apipe = D2π =
r2π

4
⇐⇒ D = 2

√
A

π
(31)

4.5 Contraction coefficient

Outflow contraction coefficient α

α =
Aactual

Aopening
=

π

2 + π
≈ 0.611[−] (32)

4.6 Energy line diagram

Ideal fluid energy line diagram

Extended energy line diagram
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4.7 Extended Bernoulli equation

Extension of the Bernoulli equation

p1
ρ

+
v21
2

+ gz1 + eA =
p2
ρ

+
v22
2

+ gz2 + eV

[
J

kg

]
Ep,1 +K1 + U1 + EA = Ep,2 +K2 + U2 + EV [J ]

(33)

4.7.1 Additional terms

Work term eA

eA =
pA
ρ

= gzA =
EA

m
=

PA

ṁ

[
J

kg

]
(34)

where:
eA: work term [J/kg]
pA: pressure diff [Pa]
zA: height difference [m]

EA: energy difference [J]
PA: power difference [W]

If energy is added to the fluid along a streamline
from point 1 to point 2 (eg. a pump), the total
energy at point 2 becomes higher than at point 1.

Sign convention
eA > 0: work is done on the fluid
→ energy is added to the fluid (eg. pump);

eA < 0: work is done by the fluid
→ energy is extracted from the fluid (eg. turbine).

Pump and turbine work Y

In the pressure equation, the pressure pA increase
(or decrease with a turbine) can be read directly
at the working term, hence:

ew = Y =
WA

ṁ
=

EA

m
= H · g =

pA
ρ

[
J

kg

]
(35)

The hydraulic power Phyd is then given by:

Phyd = ṁ · Y = V̇ · ρ · Y = ρ · V̇ · g ·H [W ] (36)

Specific loss term eV

eV =
pV
ρ

= gzV =
EV

m
=

PV

ṁ

[
J

kg

]
(37)

where:
eV : loss term [J/kg]
pV : pressure diff [Pa]
zV : height loss [m]

EV : energy loss [J]
PV : power loss [W]

The effects of a viscous fluid along a stramline from
point 1 to point 2 are taken into account by eV .

Pressure loss ∆pV

∆pV = eV ·ρ =
EV · ρ
m

= g ·zV ·ρ = ζ ·ρ · v
2

2
[Pa]

(38)

4.8 Loss behavior in turbolent flows

Zeta value

ζ =
2 ·∆pV
ρ · v2

(39)

Total pressure loss

If multiple losses occur in a system due to
sequentially connected hydraulic components, the
ttal loss ∆pV,tot is given by the sum of the individual
losses:

∆pV,tot =
∑
i

∆pV,i =
∑
i

ζi · ρ ·
v2i
2

[Pa] (40)

∆pV,tot = ρ · v
2

2
·
∑
i

ζi = ρ · v
2

2
· ζtot [Pa] (41)

Pressure head (prevalenza)

The pressure head H is the (energy) height
corresponding to its specific potential energy eA:

H =
eA
g

=
∆pA
ρ · g

[m] (42)

U-Tube manometer

h =
ρ
(
v22 − v21

)
2g (ρHg − ρw)

(43)

4.9 Efficiency

Efficiency factor η

η =
Pout

Pin
=

Benefit

Effort
(44)

ηhyd =
Preal

Pideal
=

ṁ · ereal
ṁ · eideal

=
eA − eV

eA

ηhyd =

(
=

∆ek +∆epot +∆ep
eA

)
(45)

4.9.1 Volumetric efficiency ηvol

ηvol =
ṁreal

ṁideal
=

V̇real

V̇ideal

(46)
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Efficiency factor η

4.9.2 Efficiency of a pump-driven system

ηpump =
Phyd

Pmech
=

ṁ · Y
M · ω

(47)

ηtot = ηel · ηmech · ηvol︸ ︷︷ ︸
Pump

·ηsystemhyd (48)

In the case of an eletrically driven pump, the
effective power transferred to the fluid is thus:

Peff = Pel · ηtot ⇐⇒ Pel =
Ppump

ηpump
(49)

4.9.3 Efficiency of a turbine-driven system

ηturbine =
Pmech

Phyd
= ηmech · ηhyd (50)

ηtot = ηturbine · ηel = ηmech · ηhyd · ηel (51)

5 Pipe flows

5.1 Flow characteristics

Reynolds number in pipes

Re =
vm · d
ν

(52)

Pipe flows

5.1.1 Laminar pipe flow

The pressure loss of a laminar pipe flow is described
by the Hagen-Poiseuille:

v(r) =
p1 − p2
4η · l

(
R2 − r2

)
(53)

vm =
vmax

2
=

p1 − p2
8η · l

·R2

vm =
p1 − p2
32η · l

· d2

∆p = 32η · vm · l

d2
(54)

5.1.2 Turbolent flow / Pressure lost in pipelines

Flow losses in pipeline systems consist of pressure
losses in straight or curved pipes as well as in
fittings.

∆p = λ · l
d
· ρ · v

2
m

2
(55)

5.1.3 Resistance coefficient λ

λ · l
d
· ρ · v

2
m

2
= 32η · vm · l

d2

λ =
64η

vm · d · ρ
=

64

Re
(56)

5.1.4 Loss coefficient ζ of a pipe

ζ =
l

d
· λ (57)

5.2 Straight pipes

5.2.1 Moody diagram

The resistance coefficient λ depends on the flow
characteristics (quantified by the Reynolds number Re)
and the relative wall roughness.

Pipe fittings

In pipeline systems, a portion of the pressure losses
is caused by fittings:

∆p = ev · ρ = ζ · ρ · v
2
m

2
(58)

5.2.2 Elbows

∆p = ζ · ρ · v
2

2
(59)

ζ = fRe · ζu (60)

where (given from individual diagrams):
• ζu is the geometric resistance coefficient;
• fRe is the Reynolds correction factor.

5.2.3 Diffuser

A diffuser is a section in a pipeline with a continuous
increase in cross-sectional area.

The frictional losses ∆pv in a diffuser are given by:

∆pv =
ζρv21
2

(61)

∆pv,ideal = ρ
v22 − v21

2
(62)
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Pipe fittings

The diffuser efficiency ηD according to Bernoulli:

ηD =
p2 − p1
∆pB

= 1− ζ
1

1−
(

A1

A2

)2 =
cp

cp,ideal
(63)

The various coefficients are stated as:

cp =
2 (p2 − p1)

ρv21
= ηD · cp,ideal (64)

cp,ideal = 1−
(
A1

A2

)2

(65)

ζ1 = cp,ideal − cp (66)

The opening angle of a diffuser can be calculated as:

tan(θ) =
d2 − d1
2L

(67)

φ = 2θ (68)

The optimal angle φopt is between 6-20 degrees.

5.2.4 Inlets

When a stationary fluid is introduced from a
large container into a pipe, losses occur due
to acceleration and the formation of separation
bubbles.

• sharp edge: 0.45 < ζ < 0.50
• broken edge: ζ = 0.20

5.2.5 Outlets

For an outlet into a large basin, the entire
kinetic energy is converted into static pressure loss,
meaning ζ = 1 can be assumed.

5.2.6 Valves and fittings

ζ-values are specified by different manufacturer.

6 Linear momentum theorem

Linear momentum

I⃗ = m · v⃗ [Ns] (69)

6.1 Linear momentum balance

Momentum flux
The change in motion is a change in linear
momentum over time:

F⃗res =
dI⃗

dt
=

˙⃗
I =

d (m · v⃗)
dt

(70)

at constant mass:

˙⃗
I = m · a⃗ = ṁ · v⃗ (71)

6.2 System of forces

Force balance
The sum of all external forces on a control volume
is the difference of momentum flow:

F⃗res =
∑
i

F⃗i =
˙⃗
Iout −

˙⃗
Iin (72)

expanded to:

˙⃗
Iout −

˙⃗
Iin = ṁ (v⃗2 − v⃗1) = ρ · V̇ · (v⃗2 − v⃗1) (73)

where:
m1 = ρ1 · V̇1 ·∆t = ρ1 · v1 ·A1 ·∆t

m2 = ρ2 · V̇2 ·∆t = ρ2 · v2 ·A2 ·∆t (74)

I⃗in = I⃗1 = m1 · v⃗1 = ρ1 · v1 ·A1 ·∆t · v⃗1
I⃗out = I⃗2 = m2 · v⃗2 = ρ2 · v2 ·A2 ·∆t · v⃗2 (75)

6.2.1 Momentum as vector

˙⃗
Ixyz =

(
İxİy İz

)
İ =

√
İ2x + İ2y + İ2z (76)

The external forces can consist of pressure forces
FP , body forces (support forces) FB , gravitational
forces FG, and frictional forces FF :

F⃗res =
∑
i

F⃗i = F⃗P + F⃗B + F⃗G + F⃗F (77)

6.3 Control volume

Linear momentum calculation steps

I Step: Select a suitable coordinate system
and draw it in a sketch of the flow problem;

II Step: Select control volume sensibly and
draw it in the sketch. The balance boundary
should be set so that the external forces on its
surface are knwon;

III Step: Draw in the forces F⃗P , F⃗B , F⃗G, F⃗F

acting on the CV from the outside and
calculate them from the known quantities.

IV Step: Calculate the linear momentum
fluxes at the outlet and inlet and insert them
as the resulting force (eq. 72)

V Step: Dissolve the momentum balance
equations according to the sought quantity
or its components and calculate them.

VI Step: If necessary, calculate the magnitude
and the direction (eq. 75)
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Linear momentum calculation steps

6.3.1 Plates

Fkx = ṁ · v = ρAv2 (78)

6.4 Momentum on x-direction

Wall shear stress
The shear stress τw is the force per unit area acting
on the pipe’s walls:

τw =
dv

dn
· η (79)

where:
• dv is the velocity difference;
• dn is the distance from the wall

|FK,x| = |A (pin − pout)| = |τw ·A · l| (80)

6.5 Pelton turbine

Pelton bucket

6.5.1 Velocities

• v1: absolute velocity [m/s]
• u: radial velocity [m/s]
• w1: relative velocity (turbine POV) [m/s]

vnozzle =
√
2g∆h =

√
2∆p

ρ

w1 = vnozzle − u =

√
2∆p

ρ
−Dwheel · π · nwheel

(81)

u =
vnozzle

2
(82)

Pelton bucket
6.5.2 Rotational speed

ku =
u

vnozzle
(83)

6.5.3 Hydraulic power

Phyd ≈ ρ · g ·H · V̇ ≈ ∆p · V̇ [W ] (84)

Laminar pipe velocity (section 5)

v(r) =
∆p ·R2

4η · l

(
1−

( r

R

)2
)

(85)

6.6 Borda-Carnot diffuser

Borda-Carnot diffuser

The continuity equation (eq 12, 13, 14) can be
applied for the pipe expansion.

6.6.1 Pressure difference∑
Fx = p1A1 − p2A2 = ṁ (v2 − v1) (86)

p1 − p2 = ρ · v2 · (v2 − v1) = ρ · v22
(
1− v1

v2

)
= ρ · v22 ·

(
1− A1

A2

)
= ρ · v21 ·

A2
1

A2
2

·
(
1− A2

A1

)

p1 − p2 = ρ · v21 ·
A1

A2
·
(
A1

A2
− 1

)
(87)

6.6.2 Maximum pressure

The maximum possible pressure increase can be
archieved with an area ratio of A1/A2 = 0.5. Thus:

(p2 − p1)max =
ρ · v21
4

(88)

6.6.3 Pressure loss in ideal diffusers

∆pV,id =
ρ

2
(v1 − v2)

2
=

ρ · v21
2

(
1− A2

1

A2
2

)
(89)

6.6.4 Pressure loss in real diffusers

∆pV = ∆pV,id − ζ
ρ · v2m
2

=
ρ · v21
2

(
1− A2

1

A2
2

− ζ

)
(90)
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Borda-Carnot diffuser
6.6.5 Flow losses

p1
ρ

+
v21
2

=
p2
ρ

+
v22
2

+ eV

eV =
v21
2

·
(
A1

A2
− 1

)2

=
v21
2

· ζ (91)

Hence:

ζ =

(
A1

A2
− 1

)2

(92)

6.7 Analyze of momentum equation

Momentum equation

for A2 > A1 =⇒ p2 > p1; 0 < ζ < 1

for A2 = A1 =⇒ p2 = p1; ζ = 0

for A2 → ∞ =⇒ p2 = p1; ζ = 1

for A2 = 2A1 =⇒ p2 − p1 becomes maximal

Assuming r = A2/A1, we know ζ = (1− r)
2
:

if r = 0.5 =⇒ ζ = 0.5

if r = 0.25 =⇒ ζ = 0.5625

if r = 0.75 =⇒ ζ = 0.0625

7 Angular momentum theorem

Angular momentum equation

7.1 Moment of inertia

Considering the moment of inertia as a scalar
quantity of a point mass instead of a tensor:

JPM = r2 ·m =

∫
m

r2 dm
[
kg m2

]
(93)

7.1.1 Angular momentum D

The angular momentum D of a mass m is rotating
around a point O with an angular velocity ω is:

D = m · v · r = m · r2 · ω [Nm · s] (94)

7.2 Angular momentum flux balance

The sum of all ext. torques on a CV is equal to the
difference of the in/out angular momentum flux:

M⃗res =
∑
i

M⃗i =
˙⃗
Dout −

˙⃗
Din (95)

˙⃗
D = r⃗ × ˙⃗

I = r⃗ × (ṁ · v⃗) (96)

7.2.1 Angular momentum as vector

As (eq. 75), the angular momentum is a vector.

7.3 Angular momentum application

Pelton turbine

I Step: xy-coordinates and CV
II Step: Relevant forces F⃗P , F⃗G, F⃗F , F⃗B

Mres,z = MB,z (97)

III Step: Angular momentum flux calculations:

Ḋout,z − Ḋin,z = MB,z = −r · ṁ · v1 (98)

7.3.1 Delivered power

P = ω ·MB,z = r · v1
2︸ ︷︷ ︸

r·u

· r · ṁ · v1︸ ︷︷ ︸
MB,z

= r2 · ṁ · v
2
1

2
= r2 · ρ · v

3
1

2
·Ajet (99)

Lawn sprinkler

7.3.2 Tangential (flat) jet exit

˙⃗
Dout,z −

˙⃗
Din,z = MB,z

˙⃗
Dout,z = −2r · ṁ · v1 = −2r · ṁ · (wu − u) (100)

˙⃗
Din,z = 0 (101)

7.3.3 Deflection α in plane, tilt β out of plane

wxy = cosβw1, wz = sin βw1 (102)
wu = cosαwxy = cosα cosβw1 vu = wu − u

(103)
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