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1 Preambule

Theory box

Lorem ipsum dolor sit amet.

Formula box

Lorem ipsum dolor sit amet.

Lab/examples box

Lorem ipsum dolor sit amet.

2 Fluids as energy carriers

2.1 Fluid state variables and properties

2.1.1 State variables

Density

Specific volume

AV 1 [ms]
= — = = —_—
m  p| kg
2.1.2 Viscosity

Kinematic viscosity

A
vV =

Dynamic viscosity

£y Pa s—NS— kg
n=vee T m2 m-s

2.1.3 Real and ideal fluid

Real fluid Ideal fluid

2.1.4 Compressibility

Mach number
M A

ol

where:
e M is the Mach number [-]
M < 0.3: incompressible flow
o wu is the flow velocity [m/s]
o c is the speed of sound in the fluid [m/s]

o 2 =1484 m/s
o 2 =343 m/s

variable density (Ap # 0) incompressible (Ap =
friction (n > 0,v > 0) frictionless (n = 0,v =

(1

0)
0)

()

2.2 Laminar and turbulent flow

Reynolds number

where:
o v is the mean flow velocity [m/s]
o L is the characteristic length [m]

Re values

e Re < 2000: laminar flow
e Re ~ 2300: critical point

e 2000 < Re < 4000: transitional regime
e Re > 4000: turbulent flow

2.3 Pressure and velocity

Formulas Pressure

2.3.1 Total pressure

Added to the static pressure pgiat, there is also the
dynamic pressure pqyn and the total pressure piot:

'U2
Ptot = Dstat +pdyn =P <gh + ?) (7)

2.3.2 Absolute pressure

Absolute pressure p,pns refers to the pressure in a
vacuum Pyaacum = 0 Pa, while relative pressure pye)
can refer to any chosen reference pressure ps.

Prel = Pabs — Pref <= Dabs = Prel 1 DPref >0 (8)
2.3.3 Velocity

Velocity is a vector quantity:
U = (vp0yv,) (9)

The magnitude is given by:
v =4/v3 +v2 + v2 (10)

2.4 Curvature pressure formula

Deflection motion of a fluid element around
a blunt body

Streamline

(11)

_/
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3 Mass conservation 4.2 Bernoulli equation
3.1 Continuity equation / Mass conservation RITEBHE CHEdEy G
Continuity equation
— System boundary
— |
. —_— _L
Min » I I_: Moyt
—_— ; L —
_ —_— e
Vin — | Aout | _: Vout
._’ 1 Ain
4.2.1 Alternative forms
3.1.1 Steady mass-flow Pressure equation
Min = Mout (12) 02 w2
p1+ 971 + pgz1 = p2 + pTQ + pgze = const. [Pa]
3.1.2 Incompressible fluid (19)
) . . . Height equation
m=pV = Vih=Vou (13)
2 2
pr | V1 _ P2 | Y —
3.1.3 Streamline theory E + % AL = E + @ + 22 = const. [m]  (20)
. . J
V=vA = i Ain = Vout Aout (14) .
\ VA True energy equation

The Bernoulli equation states that the sum of these

4 Energy conservation energies is constant along a streamline.
4.1 Fluid mechanical energy conservation 4.2.2 Pressure energy
p
Derivation of the Bernoulli equation Ep=m- ; [J] (21)
. p | vf . p2 | V3
my F + ? +gz1 | = ma 7 + ? + gz2 4.2.3 Kinetic energy
(15) 02
This derivation is based on the assumption that the Exin =m - D) [J] (22)
system has:
o steady flow e no work in or out 4.2.4 Potential energy
e ideal fluid of the system
« adiabatic process o 1D streamline flow Epot =m - g-z[J] (23)

4.2.5 Energy conservation

Ep,l + Ekin,l + Epot,l = Ep,2 + Ekin,2 + Epot,Q

4.1.1 Energy flow

dE .

- = E P+ E Q

! Energy f P Y o) =m (P2 (24)
across SySt;gBI};l boundary m p 2 gerp=m 1% 2 g

- L J

_ V2
+Z m/~<h/+7+gz/>
in - -

Energy transfer

4.3 Hydrostatics

miasshin Fundamental law of hydrostatics
[ n v~ ~\]
= n’ - — 16
; _m ( * 2 +9% ) (16) p = po + pgh = const. [Pa]
Energy transfer derived from:
mass out
by myg phAg
4.1.2 Outflow formula according to Torricelli p=po+ A =po+ A =po + A

2
gz1 = %2 = vy = \/29Az (17)

. J
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Venturi effect

4.4 Venturi effect experiment
4.4.1 Height — pressure difference at V =6 1/s
o Water Column Height h
60
E 50
-:é 40
E
g 30
g 20
2
10
0
1 2 3 4 5 6 7 8 9 10
Measuring Positions
W Realcase [ Ideal case —e— hy, Reference height
4.4.2 Relative static pressure pc
3000 ‘“\\ / —
—1
1500 N / —
go NN
-1500
-3000
1 2 3 4 5 6 7 8 9 10
Prel = Phydro = P9 (h - href) (27)
4.4.3 Dynamic pressure pgyn
__ 4500
©
=
3000
1500
0
1 2 3 4 5 6 7 8 9 10
2
v
Pdyn = P (28)
4.4.4 Dynamic pressure v
’ TN
v, /! AN
E / N
1
0
1 2 3 4 5 6 7 8 9 10
1%
v=— 29
’ (29)
4.4.5 Pressure difference Ap
1500
/" ‘»\
1000 / N
E R
500 &
== p L/
/'/“’
0 = _L T=f
1 2 3 4 5 6 7 8 9 10
A;D = PNoFric — Preal = PV ~ U (30)

Venturi effect

Measurament points

2P @OO DG ®

W

T T T T T T T ]
gy =
4
[ I ]
(& J
Just to not forget
2 A
Apipe=D27r=%T<=>D=2 @
i
(& J

4.5 Contraction coefficient

Outflow contraction coefficient o

Po
T&V_Jﬂ
\%

Ao v

Y ﬁ A
Aactual _

~ 0.611|— 32
Aopening 247 [ ] ( )

(N J

o =

4.6 Energy line diagram

Ideal fluid energy line diagram

[l
) S0 oo o THOION 05508
e or e }_
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4.7 Extended Bernoulli equation 4.8 Loss behavior in turbolent flows
v? v3 J 2- Apy
P g tea= 4+ 2 tgnte | — ¢= 2 (39)
p 2 p 2 kg L p-v )

Ep1+Ki+Ui1+Egs=Ep2+ Ky +Us+ Ey [J]
(33) Total pressure loss

If multiple losses occur in a system due to
sequentially connected hydraulic components, the
ttal loss Apy ot is given by the sum of the individual

Work term ey losses:

2
VA
Apy ot = Z Apy; = Z Gi-p- 51 [Pa] (40)

4.7.1 Additional terms

E Py | J
eA:Iﬁzngz—AzfA{—} (34)
p m m | kg 02 02
where: Apviot =P 5 ZQ =p 5 Got[Pa] - (41)
ea: work term [J/kg] E4: energy difference [J] | ! )
pa: pressure diff [Pa] P4: power difference [W]

24 height difference [m] Pressure head (prevalenza)
The pressure head H is the (energy) height

If energy is added to the fluid along a streamline eomespanding o i Greaiie metauisl cuay o

from point 1 to point 2 (eg. a pump), the total
energy at point 2 becomes higher than at point 1. e A

H = g 2Pa [m] (42)
. . g p-g
Sign convention

A
ea > 0: work is done on the fluid U-Tube manometer
— energy is added to the fluid (eg. pump);

J

VenturM
ea < 0: work is done by the fluid 1 |:V>
— energy is extracted from the fluid (eg. turbine). @ g, @ 9
Pump and turbine work Y
In the pressure equation, the pressure p4 increase \
(or decrease with a turbine) can be read directly %
at the working term, hence: h
WA EA pA J Mercury Manometer
o moom 9= [rg] ®¥ U
The hydraulic power P4 is then given by: v2 — 2
i h:—2p(( 2 1)) (43)
Pya=m-Y=V.p-Y=p-V.g-H[W] (36) L 9 \PHg — Puw )
1\ J
- J

Specific loss term ey 4.9 Efficiency
pv Eyv Py [ J:| Efficiency factor 7

ey = — =gzy = — = — (37)

P m m | kg
where: i Py _ Benefit (44)
ey: loss term [J/kg] Ey: energy loss [J] B Effort
py: pressure diff [Pa] Py : power loss [W] P e er_e
zy: height loss [m] Thyd = P”eal SRR o W ki

ideal "1 €ideal €A

The effects of a viscous fluid along a stramline from _(_ Aek + Aepor + Aey (45)
point 1 to point 2 are taken into account by ey . Mhyd = | = e

Pressure loss Apy

EV . U2

4.9.1 Volumetric efficiency 1o

ApV:eVp:Tp:gzvp:Cp?[Pa/]
(38)

mreal ‘/real
Tlvol = — E e — (46)
Mideal Videal

-~
|\
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Efficiency factor 7

4.9.2 Efficiency of a pump-driven system

Pya m-Y
ump — =35 . 47
pump Pmech M- w ( )
TNtot = Mel * Thmech * Mvol .ni);sdtem (48)
—_———

Pump

In the case of an eletrically driven pump, the
effective power transferred to the fluid is thus:

Poum
IDeflejel""]tot<:>Pe1:M (49)
Tlpump

4.9.3 Efficiency of a turbine-driven system

Prech
TNturbine = ;ec = Tlmech * Thyd (50)
hyd
Tltot = Tlturbine * 7lel = Tlmech * TIhyd * 7Jel (51)

~

5 Pipe flows

5.1 Flow characteristics

Reynolds number in pipes

Re:vm.d

- (52)

J

5.1.1 Laminar pipe flow

The pressure loss of a laminar pipe flow is described
by the Hagen-Poiseuille:

o) = F 7 (B =) (53)
_vmax_pl_pQ. 2

vn == =g
_ b1 —P2 p

Um = g4

l
Ap:3277-vm-ﬁ

5.1.2 Turbolent flow / Pressure lost in pipelines

(54)

Flow losses in pipeline systems consist of pressure
losses in straight or curved pipes as well as in
fittings.

l v2
Ap=A-—.p.m 55
p 7P (55)
5.1.3 Resistance coefficient \
l v, l
Mg T
64n 64
A == 56
Um-d-p Re (56)
5.1.4 Loss coefficient ¢ of a pipe
l
C=5-A (57)

~

5.2 Straight pipes
5.2.1 Moody diagram

The resistance coefficient A depends on the flow
characteristics (quantified by the Reynolds number Re)
and the relative wall roughness.

0.1
0:09 H : HI
g.g; T nifiN d/k =20
i A GLI > N Hy h
N N %, i
N N 4
0.0 A R 2o 100
\; \~_~~_ v 200
0,03 \ < \ 00
NS 3 500
X laminar- turbulent v - 11000
0,02 K ]
i S Sem =
0,014 : 4, o 41 [5000
0,012 L yd""”"ca'/y =S i
i : o Swilly
0,010 | Vi 00y, L]
0,009 Transition region EET11000
0,008 B
0007 Rekiit T T TTHI =
AR [
56810 2 3 056810 2 3us56810% 2 34568105 2 3useel0? 2
Re —»

Pipe fittings

In pipeline systems, a portion of the pressure losses
is caused by fittings:

,02
Ap=ey-p=C-p- (58)

5.2.2 Elbows

2

Ap:C-p-% (59)
C:fRe'Cu (60)

where (given from individual diagrams):
e (, is the geometric resistance coefficient;
e fRre is the Reynolds correction factor.

5.2.3 Diffuser

A diffuser is a section in a pipeline with a continuous
increase in cross-sectional area.

The frictional losses Ap,, in a diffuser are given by:

2
ap, =21 (61)
02 — 2
Apv,ideal =p 2 2 ! (62)
\ Y,

(.
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Pipe fittings

The diffuser efficiency np according to Bernoulli:

— 1
:uzl_g __% (63)

APB 1— (ﬂ) 2 Cp,ideal
Az

D

The various coefficients are stated as:

2 —
Cp = (p;U% pl) = 1D " Cp,ideal (64)
A 2
Cp.ideal = = <A_:> (65)
Cl = Cp,ideal — Cp (66)

The opening angle of a diffuser can be calculated as:

tan(f) = d22_Ld1 (67)

© =20 (68)

The optimal angle ¢qpt is between 6-20 degrees.

5.2.4 Inlets

When a stationary fluid is introduced from a
large container into a pipe, losses occur due
to acceleration and the formation of separation
bubbles.

o sharp edge: 0.45 < ¢ < 0.50

o broken edge: ¢ = 0.20

5.2.5 Outlets

For an outlet into a large basin, the entire
kinetic energy is converted into static pressure loss,
meaning ¢ = 1 can be assumed.

5.2.6 Valves and fittings

(-values are specified by different manufacturer.
(& J

6 Linear momentum theorem

Linear momentum

6.1 Linear momentum balance

The change in motion is a change in linear
momentum over time:

. dl > d(m-D)

—=1= 70

T dt dt (70)

at constant mass:
T=m-d=rm-7 (71)

1 J

6.2 System of forces

Force balance

The sum of all external forces on a control volume
is the difference of momentum flow:

Fres:ZE: L;)ut_-lli’n (72)

expanded to:

where: '
my=p1-V1-At=p;-v1-A;- At
Mo =p2- VoAt =py-vy-Ay- At (74)
Iy = z=m1'171=P1'U1'A1'At'171
Lu=h=mg Tya=py-vy-Ay-At-T (75)

6.2.1 Momentum as vector
L. = (szyfz)

I=\I2+12412 (76)

The external forces can consist of pressure forces
Fp, body forces (support forces) F, gravitational
forces F, and frictional forces Fg:

ﬁres:ZEzﬁP+FB+FG+ﬁF (77)

6.3 Control volume

Linear momentum calculation steps

I Step: Select a suitable coordinate system
and draw it in a sketch of the flow problem:;

IT Step: Select control volume sensibly and
draw it in the sketch. The balance boundary
should be set so that the external forces on its
surface are knwon;

IIT Step: Draw in the forces Fp, FB, ﬁg, Fp
acting on the CV from the outside and
calculate them from the known quantities.

IV Step: Calculate the linear momentum
fluxes at the outlet and inlet and insert them
as the resulting force (eq. 72)

V Step: Dissolve the momentum balance
equations according to the sought quantity
or its components and calculate them.

VI Step: If necessary, calculate the magnitude
and the direction (eq. 75)

- M
‘pl N T)_)’;' T T :PZ 9’1
77777 Fp'l_)!i,,,/"‘,,,,,,,,,,,,,,le Fpp
Y —>: F, o :(—
L., === | <
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Linear momentum calculation steps

6.3.1 Plates

po o W [ ¥y L.
v=u+w

*I) v w _r’/J Fiox /[ ___ji__€>

== - — x >
? u w
u
W i w=v—u
Flp = - v = pAv? (78)
\ J

6.4 Momentum on x-direction

‘Wall shear stress

The shear stress 7, is the force per unit area acting
on the pipe’s walls:

_dv

—%'77 (79)

Tw

where:
e dv is the velocity difference;

e dn is the distance from the wall
5

- ﬁR'W

6.5.2 Rotational speed

u

|FK,m| = |A (pin _pout)| = |Tw “A- l| (80)

- J

6.5 Pelton turbine

Pelton bucket

Bucket

6.5.1 Velocities

 wv1: absolute velocity [m/s]
o wu: radial velocity [m/s]
o w;: relative velocity (turbine POV) [m/s]

2A
Unozzle = QQAh = _p
2A
W1 = Unogzle — U = Tp - theel * T Nwheel
(81)
Unozzle
= cemp 82
5 (82)

ky = 83

Unozzle ( )
6.5.3 Hydraulic power

Puyamp-g-H-V~Ap-V[W]  (84)

Pelton bucket

J

Laminar pipe velocity (section 5)

6.6 Borda-Carnot diffuser

Borda-Carnot diffuser

v =0

Ay

(2)
The continuity equation (eq 12, 13, 14) can be
applied for the pipe expansion.

(1) x (1

6.6.1 Pressure difference

> Fo=piAi — pyAs = 1h (v — 1)

2 U1
= o = &
P 'U2< ’Ug)

pl—pzzp"UQ'(’UQ—'Ul)

6.6.2 Maximum pressure

The maximum possible pressure increase can be
archieved with an area ratio of A;/As = 0.5. Thus:

-
(p2 _p1>max = P 4 !

(88)
6.6.3 Pressure loss in ideal diffusers

2 2
p 2 _ Pl At
Apyia = = (v1 —v2)” = ( ——> (89)

V.id 1— V2 5 Az
C)

2
(90)

6.6.4 Pressure loss in real diffusers

N

poud _pod (),
2

Apy = Apyia — ¢ 5 5

J
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Borda-Carnot diffuser

6.6.5 Flow losses

2 2
po, o _pr 03
P 27 2

2 2 2
_v (A v
V=5 <A2 1) =3¢

A, ?
=(—-1
‘ (Az >
6.7 Analyze of momentum equation

Momentum equation

Hence:

for Ay > Ay = pa > p1; 0<(<1
for Ay = A1 = py = pq; =0
for Ay = 00 = ps = p1; (=1

for Ay = 2A; = ps — p; becomes maximal

Assuming r = Ay /Ay, we know ¢ = (1 —r)*:
ifr=05=¢=05

if r=0.256 = ¢ = 0.5625

if r=0.75 = { = 0.0625

- J

7 Angular momentum theorem

Angular momentum equation

7.1 Moment of inertia

Considering the moment of inertia as a scalar
quantity of a point mass instead of a tensor:

Jpm =12 -m = / r? dm [kg m?] (93)

7.1.1 Angular momentum D

The angular momentum D of a mass m is rotating
around a point O with an angular velocity w is:
D=m-v-r=m-r>-w[Nm- s (94)

7.2 Angular momentum flux balance

The sum of all ext. torques on a CV is equal to the
difference of the in/out angular momentum flux:

v v 3 ~ s = 0 101
Mres = Z Mi = Dout — Diy (95) ey ( )
i
2, = 7.3.3 Deflection « in plane, tilt 8 out of plane
D=#xI=7x (-9 (96) e G 2 P
Way = cOs fwy, w, = sin fw; (102)
7.2.1 Angular momentum as vector
Wy, = COS QWgy = COS A COS fW  Vy = Wy — U
As (eq. 75), the angular momentum is a vector. (103)
. J \C J

7.3 Angular momentum application

Pelton turbine

I Step: xy-coordinates and QV L.
IT Step: Relevant forces Fp, Fg, Fr, Fg

Mres,z = MB z

)

(97)

IIT Step: Angular momentum flux calculations:

Dout,z - Din,z = MB,z =—r-m- (%} (98)
7.3.1 Delivered power
()
P:w.MB7Z:r.El.r.m.vl
—————
MB,z
U
2 3
. vy Uy
=r?oie or=rp o A (99)

J

Lawn sprinkler

= = Control volume

N\
\;— Section (2)
o
Control volume
T~ [

Lo
T,
/7
Flow out { (-
\ _

N
) Flow out

haft 7/

-~ “— Section (2)

E

T,

Section (1)

~

Flow in

(a)

7.3.2 Tangential (flat) jet exit

Dout,z - Din,z = MB,Z

Eout,z =—-2r-m-vy = —2r-m- (wu — u) (100)

=it




Translation

Rotation

Location: Z [m]

Angle: J [° or rad]

_ d#
Todt

[m/s]

Velocity: = v

Angular velocity: & = 42 [1/s]

Mass: m [kg]

Mass inertia J = [ 7?2 dm [kg m?|

Linear momentum: / =m - ¢ [kgm/s| | Angular momentum D = J-d = 7 x [
(kg m?/s]
Linear momentum flux: I = % [N] Angular momentum flux: D = % =7 x I

[N m]

Force: F =1 [N]

torque: M =7 x F = D [N m]

-
Linear momentum equation: E F =
N :

Ioff - Ion

Angular momentum equation:

=

Doff - Don

S M
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