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Part I

Differential Equations Theory

1 Introduction
A differential equation is an equation in which derivatives of an unknown function appear. For example,
consider the simple differential equation Remark: This equation asserts that the instantaneous rate of change

dH

dG
= H

of H with respect to G equals H itself. Its general solution is H(G) = CeG with C an arbitrary constant.

2 Separation of Variables
For a separable differential equation of the form

dy

dx
= f(x) g(y),

we rewrite it as
dy

g(y)
= f(x) dx.

Remark: After integration, one typically obtains an implicit solution that can be solved (if possible) for y.∫
dy

g(y)
=

∫
f(x) dx

Warning: Ensure that g(y) ̸= 0 on the interval of interest.

3 Linear Differential Equations
A first-order linear differential equation can be written in the standard form

y′ + p(x)y = q(x).

Its general solution is given by

y = yh + yp,

where yh is the general solution of the homogeneous part

y′ + p(x)y = 0,

and yp is any particular solution of the full inhomogeneous equation. Remark: The principle of superposition

yh = A exp

(
−
∫

p(x)dx

)
applies to the homogeneous equation; that is, any linear combination of solutions is again a solution.

4 Exponential Growth and Decay
Many natural processes obey the simple law

dP

dt
= kP.

Its general solution is

P (t) = P (0)ekt.

Remark: This model applies not only to population growth but also to radioactive decay (with k < 0).
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P (t) = P0e
kt

5 Graphical Representation: Slope Fields
A slope field (or direction field) helps visualize the behavior of solutions of a differential equation by drawing,
at selected points (x, y), short line segments whose slope is given by the value of f(x, y) in

y′ = f(x, y).

For example, for the differential equation

y′ = y,

the slope at each point is simply the y-value. The following TikZ figure illustrates a portion of this slope field.

x

y

Remark: For y′ = y, the slope at each point equals its y-coordinate. Thus, solution curves such as y = Cex
naturally emerge from the field.

Part II

Mathematical Formulary

6 Lines and Linear Functions
6.1 Slope and Equation of a Line

m =
y2 − y1
x2 − x1

y − y1 = m(x− x1)

y = mx+ b

Remark: These formulas describe the fundamental properties of straight lines in the Cartesian plane.

7 Exponents and Logarithms
7.1 Working with Exponents

ax · at = ax+t

ax

at
= ax−t
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(ax)t = axt

y = lnx ⇐⇒ ey = x

7.2 Definition of the Natural Logarithm
Remark: For instance, ln 1 = 0 because e0 = 1.

7.3 Logarithmic Identities

ln(AB) = lnA+ lnB

ln
(
A
B

)
= lnA− lnB

lnAp = p lnA

8 Distances and Midpoint Formulas
8.1 Distance Formula

D =
√
(x2 − x1)2 + (y2 − y1)2

8.2 Midpoint Formula (
x1+x2

2 , y1+y2

2

)

9 Quadratic Equations

ax2 + bx+ c = 0 ⇒ x = −b±
√
b2−4ac
2a

10 Factoring Special Polynomials

x2 − y2 = (x+ y)(x− y)

x3 + y3 = (x+ y)(x2 − xy + y2)

x3 − y3 = (x− y)(x2 + xy + y2)

11 Conic Sections
11.1 Circles

(x− h)2 + (y − k)2 = r2

11.2 Ellipses
11.3 Hyperbolas
Remark: The asymptotes of a hyperbola are given by y = ± b

ax.
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x2

a2 + y2

b2 = 1

x2

a2 − y2

b2 = 1

12 Geometric Formulas
12.1 Conversion Between Radians and Degrees

π radians = 180◦

12.2 Circle Geometry

A = πr2, C = 2πr

12.3 Sector of a Circle

A = 1
2r

2ϑ, s = rϑ ϑ in radians.

12.4 Volumes and Surface Areas of Solids
• Sphere: V = 4

3πr
3, A = 4πr2.

• Cylinder: V = πr2h.

• Cone: V = 1
3πr

2h.

13 Trigonometric Functions and Identities
13.1 Definitions
For a right triangle with hypotenuse r and legs x and y:

sinϑ = y
r , cosϑ = x

r , tanϑ = y
x

13.2 Fundamental Identity

sin2 ϑ+ cos2 ϑ = 1

13.3 Angle Sum and Difference Formulas

sin(A±B) = sinA cosB ± cosA sinB

cos(A±B) = cosA cosB ∓ sinA sinB

13.4 Double Angle Formulas

sin(2A) = 2 sinA cosA

cos(2A) = 2 cos2 A− 1 = 1− 2 sin2 A
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14 Binomial Expansions
The binomial expansion for (x+ y)n is given by Remark: For (x− y)n, the signs alternate accordingly.

(x+ y)n = xn + nxn−1y + n(n−1)
2! xn−2y2 + · · ·+ yn

15 Differentiation Rules
1. (f(x)± g(x))′ = f ′(x)± g′(x).

2. (k f(x))′ = k f ′(x).

3. (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x).

4.
(

f(x)
g(x)

)′
= f ′(x)g(x)−f(x)g′(x)

(g(x))2 .

5. (f(g(x)))′ = f ′(g(x)) · g′(x).

6. d
dx (x

n) = nxn−1.

7. d
dx (e

x) = ex.

8. d
dx (a

x) = ax ln a, a > 0.

9. d
dx (lnx) =

1
x .

10. d
dx (sinx) = cosx.

11. d
dx (cosx) = − sinx.

12. d
dx (tanx) =

1
cos2 x .

13. d
dx (arcsinx) =

1√
1−x2

.

14. d
dx (arctanx) =

1
1+x2 .

16 Integration Rules

1.
∫
(f(x)± g(x)) dx =

∫
f(x) dx±

∫
g(x) dx.

2.
∫

k f(x) dx = k

∫
f(x) dx.

3.
∫

f(g(x))g′(x) dx =

∫
f(w) dw, w = g(x).

4.
∫

u(x)v′(x) dx = u(x)v(x)−
∫

u′(x)v(x) dx.

17 Taylor Series Expansions
The Taylor series of f(x) about x = a is

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · .
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Important examples include:

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · ,

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · ,

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

1

1− x
= 1 + x+ x2 + x3 + · · · (|x| < 1),

(1 + x)p = 1 + px+
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · · .

18 Complex Numbers and Euler’s Formula
A complex number z is written as

z = x+ yj, x, y ∈ R.

Its magnitude is

|z| =
√
x2 + y2,

and its conjugate is

z̄ = x− yj.

Euler’s formula states that

ejt = cos t+ j sin t,

so any complex number can be written in polar form as

z = rejφ, r ≥ 0, −π < φ ≤ π.
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