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Part 1

Differential Equations Theory

1 Introduction

A differential equation is an equation in which derivatives of an unknown function appear. For example,
consider the simple differential equation Remark: This equation asserts that the instantaneous rate of change

dH

R
dG

of H with respect to G equals H itself. Its general solution is H(G) = Ce® with C an arbitrary constant.

2 Separation of Variables

For a separable differential equation of the form
dy
L= @) 9.
we rewrite it as

dy _ x)dx
@—f()cﬁ

Remark: After integration, one typically obtains an implicit solution that can be solved (if possible) for y.

Warning: Ensure that g(y) # 0 on the interval of interest.

3 Linear Differential Equations

A first-order linear differential equation can be written in the standard form
v +p@)y = q(2).
Its general solution is given by

y:yh+yp7

where yj, is the general solution of the homogeneous part
v +p(x)y =0,

and y,, is any particular solution of the full inhomogeneous equation. Remark: The principle of superposition

yn = Aexp (— /p(w)dw)

applies to the homogeneous equation; that is, any linear combination of solutions is again a solution.

4 Exponential Growth and Decay

Many natural processes obey the simple law
dpP
=

Its general solution is

P(t) = P(0)e"".

kP.

Remark: This model applies not only to population growth but also to radioactive decay (with k& < 0).



P(t) = P()ekt

5 Graphical Representation: Slope Fields

A slope field (or direction field) helps visualize the behavior of solutions of a differential equation by drawing,
at selected points (x,y), short line segments whose slope is given by the value of f(z,y) in

y' = f(z,y).
For example, for the differential equation
¥ =y,

the slope at each point is simply the y-value. The following TikZ figure illustrates a portion of this slope field.
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Remark: For 3’ = y, the slope at each point equals its y-coordinate. Thus, solution curves such as y = Ce®
naturally emerge from the field.

Part 11

Mathematical Formulary

6 Lines and Linear Functions

6.1 Slope and Equation of a Line

_Y2—0
To — T

m

‘y—ylzm(ﬂf—xl)‘

Remark: These formulas describe the fundamental properties of straight lines in the Cartesian plane.

7 Exponents and Logarithms

7.1 Working with Exponents




(ax)t — axt

’yzlnx@ey:z‘

7.2 Definition of the Natural Logarithm

Remark: For instance, In1 = 0 because e = 1.

7.3 Logarithmic Identities

[In(AB) =InA+InB

In(4)=mhA-InB

In AP =pln A

8 Distances and Midpoint Formulas

8.1 Distance Formula

D= /(z2—21)>+ (y2 — 11)?

8.2 Midpoint Formula

(252, 255)

)

9 Quadratic Equations

ar?+br+c=0 = zx=

—bt+vb%2—4ac
2a

10 Factoring Special Polynomials

2P =ty -y

’x3+y3=(x+y)($2—$y+yz)‘

2=y = @)@ty )|

11 Conic Sections

11.1 Circles

(=1 + (y— )2 =r?]

11.2 Ellipses

11.3 Hyperbolas
Remark: The asymptotes of a hyperbola are given by y = :I:g:r.
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12 Geometric Formulas

12.1 Conversion Between Radians and Degrees

’7r radians = 180° ‘

12.2 Circle Geometry

’A:7rr27 C=27rr‘

12.3 Sector of a Circle

s = rd ¥ in radians.

A= %rzﬁ,

12.4 Volumes and Surface Areas of Solids
o Sphere: V = 3mr3, A =4mr?.
o Cylinder: V = 7mr2h.

e Cone: V = %m'zh.

13 Trigonometric Functions and Identities

13.1 Definitions
For a right triangle with hypotenuse r and legs x and y:

sind =%, cosd =2, tand =%
T T x

13.2 Fundamental Identity

sin? 9 + cos? 9 = 1

13.3 Angle Sum and Difference Formulas

’sin(A:i:B) = sinAcosB:I:cosAsinB‘

’cos(A:I:B) = cosAcosB:FsinAsinB‘

13.4 Double Angle Formulas

’ sin(2A4) = 2sin A cos A ‘

’cos(2A) =2c052A—1:1—231n2A‘




14 Binomial Expansions

The binomial expansion for (z + y)™ is given by Remark: For (z — y)", the signs alternate accordingly.

(@+y)" =a" +naly+ Mogn-22 4y

15 Differentiation Rules

L (f(z) £ g(2)) = f'(z) £ ¢'(2).
2. (kf(z)) =k f'(z).
3. (f(x)g(x)) = ['(x)g(x) + f(x)g' (z).
n (f(w))' _ I @e@)~f@)g' @)
(

) (@)
(9(x)))" = f'(9(x)) - ¢' (z).
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16 Integration Rules

—_

@ g@ydo= [ fa)dox [ glo)d.

[\

. /kf(x)dm:k/f(x)dx.

w

/ fe@)g/ @) de = [ fw)dw, w=g(z).

N

/ W@y (z) da = u(z)o(z) — / o (2)o(z) da.

17 Taylor Series Expansions

The Taylor series of f(z) about z = a is

f"(a)
2!

2 ["(a) 3
(x—a)*+ 30 (x—a)’+---.

f@)=fla)+ f'(a)(x —a) +



Important examples include:

2 48
T T
S z? a2t b
cosx = —E—FI a—i— )

_ x3 25 2T

sinx x—ﬁ—i_ﬁ ?—i- ,

L 2 3

1_x:1+:c+x +ao 4+ (Jz| < 1),

1 (-2
(1+x)p:1+pa?+p(p2| Jp2 1 P ?))'(p Jas 4.

18 Complex Numbers and Euler’s Formula

A complex number z is written as
z=x+vyj, x,y€cR
Its magnitude is
A= VTP
and its conjugate is
zZ=x—Yyj.
Euler’s formula states that
e’t = cost + jsint,
so any complex number can be written in polar form as

z:rej“", r>0, —-t<ep< .
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