

Mathematics 2A

HSLU, Semester 2

Matteo Frongillo

Last update: March 18, 2025

Contents

I	Differential Equations Theory	3
1	Introduction	3
2	Separation of Variables	3
3	Linear Differential Equations	3
4	Exponential Growth and Decay	3
5	Graphical Representation: Slope Fields	4
II	Mathematical Formulary	4
6	Lines and Linear Functions	4
6.1	Slope and Equation of a Line	4
7	Exponents and Logarithms	4
7.1	Working with Exponents	4
7.2	Definition of the Natural Logarithm	5
7.3	Logarithmic Identities	5
8	Distances and Midpoint Formulas	5
8.1	Distance Formula	5
8.2	Midpoint Formula	5
9	Quadratic Equations	5
10	Factoring Special Polynomials	5
11	Conic Sections	5
11.1	Circles	5
11.2	Ellipses	5
11.3	Hyperbolas	5
12	Geometric Formulas	6
12.1	Conversion Between Radians and Degrees	6
12.2	Circle Geometry	6
12.3	Sector of a Circle	6
12.4	Volumes and Surface Areas of Solids	6
13	Trigonometric Functions and Identities	6
13.1	Definitions	6
13.2	Fundamental Identity	6
13.3	Angle Sum and Difference Formulas	6

13.4 Double Angle Formulas	6
14 Binomial Expansions	7
15 Differentiation Rules	7
16 Integration Rules	7
17 Taylor Series Expansions	7
18 Complex Numbers and Euler's Formula	8

Part I

Differential Equations Theory

1 Introduction

A **differential equation** is an equation in which derivatives of an unknown function appear. For example, consider the simple differential equation Remark: This equation asserts that the instantaneous rate of change

$$\boxed{\frac{dH}{dG} = H}$$

of H with respect to G equals H itself. Its general solution is $H(G) = \mathcal{C}e^G$ with \mathcal{C} an arbitrary constant.

2 Separation of Variables

For a separable differential equation of the form

$$\frac{dy}{dx} = f(x)g(y),$$

we rewrite it as

$$\frac{dy}{g(y)} = f(x)dx.$$

Remark: After integration, one typically obtains an implicit solution that can be solved (if possible) for y .

$$\boxed{\int \frac{dy}{g(y)} = \int f(x)dx}$$

Warning: Ensure that $g(y) \neq 0$ on the interval of interest.

3 Linear Differential Equations

A first-order linear differential equation can be written in the standard form

$$y' + p(x)y = q(x).$$

Its general solution is given by

$$y = y_h + y_p,$$

where y_h is the general solution of the homogeneous part

$$y' + p(x)y = 0,$$

and y_p is any particular solution of the full inhomogeneous equation. Remark: The principle of superposition

$$\boxed{y_h = A \exp \left(- \int p(x)dx \right)}$$

applies to the homogeneous equation; that is, any linear combination of solutions is again a solution.

4 Exponential Growth and Decay

Many natural processes obey the simple law

$$\frac{dP}{dt} = kP.$$

Its general solution is

$$P(t) = P(0)e^{kt}.$$

Remark: This model applies not only to population growth but also to radioactive decay (with $k < 0$).

$$P(t) = P_0 e^{kt}$$

5 Graphical Representation: Slope Fields

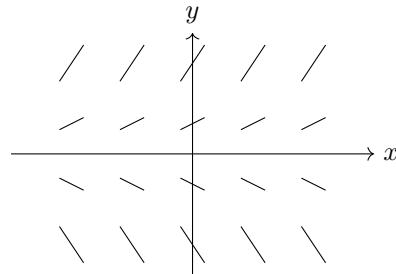
A slope field (or direction field) helps visualize the behavior of solutions of a differential equation by drawing, at selected points (x, y) , short line segments whose slope is given by the value of $f(x, y)$ in

$$y' = f(x, y).$$

For example, for the differential equation

$$y' = y,$$

the slope at each point is simply the y -value. The following TikZ figure illustrates a portion of this slope field.



Remark: For $y' = y$, the slope at each point equals its y -coordinate. Thus, solution curves such as $y = Ce^x$ naturally emerge from the field.

Part II

Mathematical Formulary

6 Lines and Linear Functions

6.1 Slope and Equation of a Line

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$y - y_1 = m(x - x_1)$$

$$y = mx + b$$

Remark: These formulas describe the fundamental properties of straight lines in the Cartesian plane.

7 Exponents and Logarithms

7.1 Working with Exponents

$$a^x \cdot a^t = a^{x+t}$$

$$\frac{a^x}{a^t} = a^{x-t}$$

$$(a^x)^t = a^{xt}$$

$$y = \ln x \iff e^y = x$$

7.2 Definition of the Natural Logarithm

Remark: For instance, $\ln 1 = 0$ because $e^0 = 1$.

7.3 Logarithmic Identities

$$\ln(AB) = \ln A + \ln B$$

$$\ln\left(\frac{A}{B}\right) = \ln A - \ln B$$

$$\ln A^p = p \ln A$$

8 Distances and Midpoint Formulas

8.1 Distance Formula

$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

8.2 Midpoint Formula

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

9 Quadratic Equations

$$ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

10 Factoring Special Polynomials

$$x^2 - y^2 = (x + y)(x - y)$$

$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

11 Conic Sections

11.1 Circles

$$(x - h)^2 + (y - k)^2 = r^2$$

11.2 Ellipses

11.3 Hyperbolas

Remark: The asymptotes of a hyperbola are given by $y = \pm \frac{b}{a}x$.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

12 Geometric Formulas

12.1 Conversion Between Radians and Degrees

$$\pi \text{ radians} = 180^\circ$$

12.2 Circle Geometry

$$A = \pi r^2, \quad C = 2\pi r$$

12.3 Sector of a Circle

$$A = \frac{1}{2}r^2\vartheta, \quad s = r\vartheta \quad \vartheta \text{ in radians.}$$

12.4 Volumes and Surface Areas of Solids

- Sphere: $V = \frac{4}{3}\pi r^3, \quad A = 4\pi r^2$.
- Cylinder: $V = \pi r^2 h$.
- Cone: $V = \frac{1}{3}\pi r^2 h$.

13 Trigonometric Functions and Identities

13.1 Definitions

For a right triangle with hypotenuse r and legs x and y :

$$\sin \vartheta = \frac{y}{r}, \quad \cos \vartheta = \frac{x}{r}, \quad \tan \vartheta = \frac{y}{x}$$

13.2 Fundamental Identity

$$\sin^2 \vartheta + \cos^2 \vartheta = 1$$

13.3 Angle Sum and Difference Formulas

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

13.4 Double Angle Formulas

$$\sin(2A) = 2 \sin A \cos A$$

$$\cos(2A) = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$

14 Binomial Expansions

The binomial expansion for $(x + y)^n$ is given by Remark: For $(x - y)^n$, the signs alternate accordingly.

$$(x + y)^n = x^n + n x^{n-1} y + \frac{n(n-1)}{2!} x^{n-2} y^2 + \cdots + y^n$$

15 Differentiation Rules

1. $(f(x) \pm g(x))' = f'(x) \pm g'(x)$.
2. $(k f(x))' = k f'(x)$.
3. $(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$.
4. $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$.
5. $(f(g(x)))' = f'(g(x)) \cdot g'(x)$.
6. $\frac{d}{dx}(x^n) = nx^{n-1}$.
7. $\frac{d}{dx}(e^x) = e^x$.
8. $\frac{d}{dx}(a^x) = a^x \ln a$, $a > 0$.
9. $\frac{d}{dx}(\ln x) = \frac{1}{x}$.
10. $\frac{d}{dx}(\sin x) = \cos x$.
11. $\frac{d}{dx}(\cos x) = -\sin x$.
12. $\frac{d}{dx}(\tan x) = \frac{1}{\cos^2 x}$.
13. $\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}}$.
14. $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$.

16 Integration Rules

1. $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$.
2. $\int k f(x) dx = k \int f(x) dx$.
3. $\int f(g(x))g'(x) dx = \int f(w) dw$, $w = g(x)$.
4. $\int u(x)v'(x) dx = u(x)v(x) - \int u'(x)v(x) dx$.

17 Taylor Series Expansions

The Taylor series of $f(x)$ about $x = a$ is

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \cdots$$

Important examples include:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots,$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots,$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots,$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots \quad (|x| < 1),$$

$$(1+x)^p = 1 + px + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \cdots.$$

18 Complex Numbers and Euler's Formula

A complex number z is written as

$$z = x + yj, \quad x, y \in \mathbb{R}.$$

Its magnitude is

$$|z| = \sqrt{x^2 + y^2},$$

and its conjugate is

$$\bar{z} = x - yj.$$

Euler's formula states that

$$e^{jt} = \cos t + j \sin t,$$

so any complex number can be written in polar form as

$$z = re^{j\varphi}, \quad r \geq 0, \quad -\pi < \varphi \leq \pi.$$