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Part I

Planes and surfaces in space

1 Plane π in space
Let π denote the plane:

sx ∈ π, sy ∈ π, sz ∈ π

π : ax+ by + cz + d = 0

For Sx ∈ π =⇒ 1a+ 0b+ 0c+ d = 0, hence
a+ d = 0

For Sy ∈ π =⇒ 0a+ 2b+ 0c+ d = 0, hence
2b+ d = 0

for Sz ∈ π =⇒ 0a+ 0b+ 3c+ d = 0, hence
3c+ d = 0


a+ d = 0

2b+ d = 0

3c+ d = 0

=⇒


a = −d
2b = −d
3c = −d

Case 1:

d = 0 =⇒ a = 0, b = 0, c = 0 =⇒ π : 0 = 0 =⇒ NOT a plane!

Case 2:

d ̸= 0 =⇒ π :
ax+ by + cz + d

d
= 0 =⇒ a

d
x+

b

d
y +

c

d
z + 1 = 0

Hence:
a = −d
2b = −d
3c = −d

=⇒


a
d = −1
b
d = − 1

2
c
d = − 1

3

Which leads to:

π : −x− 1

2
y − 1

3
z + 1 = 0

Remark: the equation of a plane is defined up to a multiplication by a real number different from 0

e.g.: the same planed is shared between those 3 equations
ex 1)

z = 0 ⇐⇒ 5z = 0 ⇐⇒ −10z = 0

ex 2)

−x− 1

2
y − 1

3
z + 1 = 0 ⇐⇒ 6x+ 3y + 2z + 6 = 0
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2 Functions in two variables x and y

Let us take π : x2 − y2 = 0 as example.

The plot would look like this:

−10
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5
10

−10

10

−100

100

2.1 Spheres

3 Linear functions of two variables
We say that z is a linear function of x and y, if there are constant a, b and d such that:

z = ax+ by + d

holds. Alternatively: if there are constant A,B,C,D, with C ̸= 0, such that:

Ax+By + Cz +D = 0

holds. Since C ̸= 0, we can rearrange this equation into:

z = −Ax
C

− By

C
− D

C
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4 Contour lines{
z = f(x, y)

z = k k ∈ R

z = k represents all the possible horizontal planes

Ex: {
z = x2 − y2

z = k
=⇒

{
k = x2 − y2

z = k

−2

0

2−2

0

2

0

5

x y

z

All the planes with equation z = k are parallel to the coordinate planes z = 0.

When z = k = 0, the circle is reduced to a point, the origin.

When k < 0, the equation x2 + y2 = k has no solution in R.

When k > 0, the equation x2 + y2 = k represents a circle with radius
√
k centered at the origin.

5 Cylinders
A cylinder is a surface generated by all the lines parallel to a given line d and passing through a given curve C.

5.1 Property
Whenever you have a polynomial equation of degree at least 2 with a missing variable, then you have a cylinder
(up to few exceptions).

Ex:

z = y2 =⇒ y2 − z = 0

This is a cylinder with generatrix parallel to the x axis and directrix the parabola y2 − z = 0 in the yz plane.

−2
0

2
−2

−1
0

1
2

0

2

4

x
y

z
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Part II

Partial derivatives
For a multivariable function f(x, y, ...), the partial derivative to one variable measures the instantaneous rate
of change of f when that variable changes and the others are held constant:

∂z

∂x
= fx(x, y)

If z is a function of x and y, we define:

The rate of change of z with respect to x, with y fixed, at the point (x, y)=(a, b) as

∂z

∂x

∣∣
(x,y)=(a,b)

= lim
h→0

Z
∣∣
(x,y)=(a+h,b)

− Z
∣∣
(x,y)=(a,b)

h

The rate of change of z with respect to y, with x fixed, at the point (x, y) = (a, b) as

∂z

∂x

∣∣
(x,y)=(a,b)

= lim
h→0

Z
∣∣
(x,y)=(a,b+h)

− Z
∣∣
(x,y)=(a,b)

h

For the lectures, we will be using the formula with 2-steps difference (∆za = (a+ h, b)− (a− h, b)):

∂z

∂x

∣∣
(x,y)=(a,b)

=
Z
∣∣
(x,y)=(a+h,b)

− Z
∣∣
(x,y)=(a−h,b)

2h

∂z

∂y

∣∣
(x,y)=(a,b)

=
Z
∣∣
(x,y)=(a,b+h)

− Z
∣∣
(x,y)=(a,b−h)

2h

6 Local linearization
6.1 Tangent plane of a function at point P
Let f(x, y) be our function and P (a, b) a point, P ∈ f :

f(x, y) ≈ f(a, b) +
∂

∂x
f(a, b)(x− a) +

∂

∂y
f(a, b)(y − b)

7 Gradient
The gradient of a function z = f(x, y) is defined by:

grad f = ∇f = fx
−→ex + fy

−→ey =

(
fx
fy

)
where fx =

∂f

∂x
and fy =

∂f

∂y
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7.1 Geometrical properties of the gradient vector ∇ in the plane
If f is differentiable at the point (a, b) and ∇f ̸= −→

0 , then the following holds:

∇f(a,b):

• is perpendicular to the contour line of f through (a, b)

• points in the direction of the maximum rate of change f

The length ∥∇f(a,b)∥ of the gradient vector is:

• the maximum rate of change f at this point

• large when the contour lines are close together

• small when the contour lines are far apart

7.2 Gradient of a function of three variables
The gradient of a function w = f(x, y, z) is defined by:

grad f = ∇f = fx
−→ex + fy

−→ey + fz
−→ez =

fxfy
fz


where fx =

∂f

∂x
, fy =

∂f

∂y
, and fz =

∂f

∂z

7.3 Second-order partial derivatives of z = f(x, y)

A function z = f(x, y) has two first-order partial derivatives, fx and fy, and four second-order partial derivatives:

1.
∂2z

∂x2
= fxx(x, y) = (fx)x(x, y),

2.
∂2z

∂x∂y
= fyx(x, y) = (fy)x(x, y),

3.
∂2z

∂y∂x
= fxy(x, y) = (fx)y(x, y),

4.
∂2z

∂y2
= fyy(x, y) = (fy)y(x, y)

Usually, parenthesis are omitted, writing directly fxy instead of (fx)y, and ∂2z

∂y∂x
instead of ∂

∂y

(
∂z

∂x

)
.

7.4 Equality of mixed partial derivatives (Schwarz’s Theorem)
If fxy and fyx are continuous at a point (a, b) inside the domain, then:

fxy(a, b) = fyx(a, b)
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8 Directional derivatives in the plane
8.1 Directional derivative of f at P (a, b) in the direction of −→u

If −→eu = −→u = u1
−→ex + u2

−→ey is a unit vector ∥u∥ = 1, we define the directional derivative ∂f

∂−→u
= f−→u by

∂f

∂−→u
(a, b) = f−→u (a, b) = lim

h→0

f(a+ hu1, b+ hu2)− f(a, b)

h

8.2 Gradient and directional derivative
If f is differentiable and −→eu = u1

−→ex + u2
−→ey is the unit vector in the direction of −→u , then:

∂f

∂−→u
(a, b) = f−→u (a, b) = fx(a, b)u1 + fy(a, b)u2 = ∇f(a, b) · −→eu

9 Critical points
9.1 Discriminant
Let (x0, y0) be a critical point. Furthermore, let

D(x0, y0) = fxx(x0, y0)fyy(x0, y0)−
(
fxy(x0, y0)

)2
Then the following holds:

• If D > 0 and fxx > 0, then f has a local minimum at (x0, y0)

• If D > 0 and fxx < 0, then f has a local maximum at (x0, y0)

• If D < 0, then f has a saddle point at (x0, y0)

• If D = 0, no conclusion can be made

10 Constraints and Lagrange Multipliers
10.1 Lagrange multiplier λ

The scalar λ measures how sensitive the optimal value of f is with respect to small changes in the constraint
level c. Formally,

λ =
∂f∗

∂c

where f∗ denotes the optimal value of f . A positive λ indicates that relaxing the constraint (c larger) increases
the optimal value of f .

10.2 Graphical representation
The optimization of f(x, y) under the constraint g(x, y) = c can be visualized as searching for points where a
level curve of f is tangent to the constraint curve. At an optimum, the gradients are parallel:

∇f(x, y) = λ∇g(x, y)

8



10.3 Lagrange function L
When optimizing f(x, y) under the constraint g(x, y) = c, the Lagrange function is used:

L(x, y, λ) = f(x, y)− λ(g(x, y)− c)

The partial derivatives must be calculated:

∂L
∂x

=
∂f

∂x
− λ

∂g

∂x

∂L
∂y

=
∂f

∂y
− λ

∂g

∂y

∂L
∂λ

= −
(
g(x, y)− c

)
The stationary points of L satisfy:

∂L
∂x

= 0

∂L
∂y

= 0

g(x, y) = c

Solutions (x, y, λ) of this system give the candidate extrema of f under the constraint g(x, y) = c.
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Part III

Integration of functions with multiple variables

11 Domain of integration Ω

Let f : Ω ⊂ R2 → R. The set Ω is a region in the xy-plane over which the double integral∫∫
Ω

f(x, y) dx dy

is taken.

12 Double integrals as iterated integrals
If the region R is a rectangle with a ≤ x ≤ b and c ≤ y ≤ d and if f is continuous in the region R, then the
integral of f over R is equal to the iterated integral

∫
R

f dA =

d∫
y=c

b∫
x=a

f(x, y) dx dy

The iterated integrals can also be written as

d∫
c

b∫
a

f(x, y) dx dy

12.1 Double integral over rectangles

∫
R

f(x, y) dA =

d∫
c

b∫
a

f(x, y) dx dy =

b∫
a

d∫
c

f(x, y) dy dx

12.2 Triangular regions
For the triangle with vertices (0, 0), (1, 0), (0, 1) =⇒ 0 ≤ y ≤ 1, 0 ≤ x ≤ 1− y:

1∫
y=0

1−y∫
x=0

f(x, y) dx dy

Equivalently 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x:

1∫
x=0

1−x∫
y=0

f(x, y) dy dx
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12.3 Double integral over general regions
If the region Ω is not a rectangle, one must describe it using variable limits that follow the boundary of Ω

12.3.1 x-simple region

If the region Ω = {(x, y) | a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}, then

b∫
a

φ2(x)∫
φ1(x)

f(x, y) dy dx

12.3.2 y-simple region

If the region Ω = {(x, y) | c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y)}, then

d∫
c

ψ2(y)∫
ψ1(y)

f(x, y) dx dy

12.4 Double integrals in Polar coordiates
12.4.1 Polar coordinates

Polar coordinates are defined as the coordinate change

f : (0,+∞)× (−π, π] → R2 \
{
(x, 0) ∈ R2 | x ≤ 0

}
given by

f(r, φ) = (r cosφ, r sinφ)

12.4.2 Integration formula

To compute an integral in polar coordinates:

x = r cosφ,
y = r sinφ,
x2 + y2 = r2

and

dA = r dφ dr and dA = r dr dφ

13 Triple integrals as iterated integrals
If the region V is a box with a ≤ x ≤ b, c ≤ y ≤ d, and p ≤ z ≤ q and if f is continuous in the region V , then
the integral of f over V is equal to the iterated integral

∫
W

f dV =

q∫
p

d∫
c

b∫
a

f(x, y, z) dx dy dz
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13.1 Triple integrals in Cylindrical coordinates
13.1.1 Cylindrical coordinates

Cylindrical coordinates are defined as the coordinate change

f : (0,+∞)× (−π, π]× R → R3 \
{
(x, 0, z) ∈ R3 | x ≤ 0

}
given by

f(r, φ, z) = (r cosφ, r sinφ, z)

13.1.2 Integration formula

Each point (x, y, z) in a 3D space is represented by 0 ≤ r <∞, −π < φ ≤ π, and −∞ < z <∞. The following
relations hold:

x = r cosφ
y = r sinφ
z = z
x2 + y2 = r2

and

dV = r dr dφ dz

13.2 Changing the Order of Integration
To change the order of integration (e.g., swapping dy dx to dx dy), one must redefine the boundaries of the
region Ω. This involves switching from a y-simple description to an x-simple description (or vice versa).

Method:

1. Sketch the region Ω based on the original limits.

2. Identify the boundary curves and rewrite their equations (e.g., convert y = g(x) to x = g−1(y)).

3. Determine the new constant limits for the new outer variable.

4. Determine the new variable limits for the new inner variable.

Example: Consider the integral over the region bounded by y = x2, x = 0, and y = 1:

∫ 1

0

∫ 1

x2

f(x, y) dy dx

To change the order to dx dy:

• The boundary y = x2 becomes x =
√
y.

• The outer variable y ranges from 0 to 1.

• For a fixed y, x ranges from 0 to √
y.

∫ 1

0

∫ √
y

0

f(x, y) dx dy
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