
Matteo Frongillo Systems Modelling Cheat Sheet
SW 1: Introduction
Model’s three properties
• Mapping: models act as a representation of natural or
artificial originals and can be models in turn;

• Reduction: models function as abstraction. They do
not capture every attribute of the original; instead, they
isolate and retain only those attributes relevant to the
specific objective, intentionally omitting detail to man-
age complexity and focus on the problem at hand;

• Pragmatic: models function as utilitarian substitutes.
They do not replace the original universally but serve
as a representative for a specific user (subject), within
a defined time frame, and for a particular purpose or
operation.

Example

• Generaliz.: point mass sliding down an inclined plane;
• Mapping: box as mass, conveyor slope as an angle θ,
vertical drop as height h, gravity;

• Reduction: no structure flexibility, no air movement,
no friction, no rollers→ flat plane;

• Pragmatic: it allows a, vf , t of the box to be calculated,
it enables the prediction of how to build a belt mockup.

Digital representation
Manual Data Flow (Offline)
Automatic Data Flow (Real-time)

Digital model (simulation)
Nodirect connection between digital and physical object:

Digital shadow
Unidirectional, automated data flow from physical object
to digital model:

Digital twin
Automated data exchange between physical object and
model:

Role of time
Stationary behavior
Steady-state operation: ṁα = ṁω

Dynamic behavior

Non stationary/transient/unsteady: dm
dt

= ṁα − ṁω

Governing dynamics
Empirical (black box)
Data based, without direct physics
link. (ex: machine learning, fitting of
functions)

t y?

Physics-based (white box)
Based on physical laws.
(ex: conservation of mass) t yf(t)

Grey-box (hybrid)
Combining physics and data
parameters. θ

Role of space
Point model (0D)
Assumes the whole system is perfectly mixed. (ex: ideal
mixer with isotropic distribution). Software: Excel, MAT-
LAB

Linked point
Connects several simple models together to create a ba-
sic network or layout. (ex: space shown via linking of 0D-
models). Software: Simulink, Modelica
Spatial model (1-3D)
Considers real position of state variables or entities; spa-
tial relationships affect the dynamics. (ex: real mixer
with anisotropic, heterogeneous distribution). Software:
COMSOL, ANSYS, AutoCAD, REVIT
Example with a heat pump
• Purpose: digital shadow→ automated data;
• Governing dynamics: physics-based → based on
thermodyn. laws;

• Time: time dependent, dynamic behavior → heating
load, power of the hp, on/off cycles;

• Space: linked point→ el. inputs, thermal
energy exchange, 4 components to monitor.

Solvability of models
Analytical
Closed formula as solution. Only for simple problems.

A =
x3

3

∣∣∣2
0
=

8

3

Numerical
Numerical approximation. For complex problems.

A ≈
n∑

i=1

f(xi)dx ≈ 2.6667

Further modelling properties
Linear vs Non-linear

Linear Non-Linear

Continuity vs Differentiability

Non-Cont Cont/Non-Diff Differentiable

Deterministic vs Stochastic

t

Deterministic
t

Stochastic

1

Matteo Frongillo Systems Modelling Cheat Sheet
Modelling approaches
Top-down
Largest components broken down into smaller. ex: mar-
ble block sculpture, railway network.
+ Efficient model, – Misses details
Bottom-up
Individual components combined into larger. ex: LEGO
model, human body.
+ Detailed model, – Complex
SW2: How to model a system
1. Problem formulation
2. Mathematical representation
3. Mathematical analysis
4. Interpretation and evaluation of results
Problem formulation
Task 1 - Defining goals
What do we want to achieve?
How well/closely does our model need to represent real-
ity?
What could be the goals for this specific system?
Task 2 - Characterize the system
What are the relevant parameters and variables of the
system?
What are the system boundaries?
What are the inputs and outputs of the system?
Task 3 - Simplify and idealize the system
Still reproduce the significant behaviors of the system,
while reducing complexity.
Reduce model to the main parameters and variables (ex.
for hp: COP? Max. power? Avg power? Yearly values?
Temperature levels?).
Mathematical formulation
Task 1 - Identify fundamental theories and laws
If no laws are available, use ad-hoc or empirical data to
derive relationships:
Thermodynamic laws, material properties, ad-hoc
Task 2 - Derivation of relationships
Transfer system into a mathematical formulation.
Top-down (black/grey box): Use generic relationship,
data from measurement to determine parameters. For
more complex systems, addmore parameters. Use tech-
niques such as machine learning.

Bottom-up: Detailed physical modelling of the device.
Physical laws to describe each component. Exact geom-
etry, material properties, boundary conditions.
Task 3 - Reduce to standard mathematical problem
Simple algebra, linear programming, differential equa-
tion, diffusion problem, wave propagation, FEM prob-
lem, using suitablemethods and software/programming
tools.
Interpretation and evaluation of the results
Task 1 - Calibration of results
Use existing data to calibrate the model.
Task 2 - Validation
Check underlying physics law, such as energy or mass
conservation, compare to known solutions, look at ex-
treme cases, compare to measured data.
→What is it and why do we have to do it?

Before the modelling:
What do we model how?:

a) Aims: does the model describe the process under
test?

b) Output: does the model provide the required output
to describe the process?

c) Type: is the type of themodel suitable to describe the
process?

During modelling:
Can we reproduce the measurements?
Does the model behave like to system under study?

d) Fitting data: does the model reproduce the fitting
data? How to measure accuracy?

e) Reproducing novel data: does themodel also predict
novel measurement data correctly?

f) Sensitivity analysis: does the model predict the be-
havior of the system correctly when system parame-
ters are changed?

After modelling:
Does the model also work with new data?

g) System potentially changed.
h) Differences in system behavior is only manifest in

new experiments.

SW 3: Data-based modelling
Linear regression
Used to find a linear function y = f(x) = a+ bx that best
fits a dataset (xi, yi).
Least squares method
Minimize the sum of squared errors (SSE):

S =
∑
i=1

(yi − (a+ bxi))
2

Ifmeasurement uncertainties∆yi exist, weight the error:

Si =

(
yi − y(x)

∆yi

)2

Optimal parameter formulas
Finding a and b when S is minimal:

∂S

∂a
= 0 ;

∂S

∂b
= 0

Slope b:

b =

∑
i xiyi − 1

n (
∑

i xi) (
∑

i yi)∑
i x

2
i − 1

n (
∑

i xi)
2

Intercept a:
a = ȳ − bx̄

where:
x̄ =

∑
i xi

n
; ȳ =

∑
i yi
n

Quality of fit
(
R2)

The coefficient of determination R2 indicates the per-
centage of variation explained by the model:

R2 =

∑
i (y(x)− ȳ)

2∑
i (yi − ȳ)

2

• R2 = 1 (100%): the model explains all data;
• R2 = 0 (0%): the model doesn’t (random).
Multilinear regression
Used when the target depends on multiple variables:

y(x1, . . . , xn) = a+ b1x1 + . . .+ bnxn = a+

n∑
j=1

bjxj

Non-linear regression
The goal is to fit data using non-linear functions when
the underlying process is not linear.

2

Matteo Frongillo Systems Modelling Cheat Sheet
Linearization techniques

Function Equation Trasformation Variables

Exp y = aebx ln y = ln a+ bx x vs ln y

Power y = abx ln y = ln a+ x ln b x vs ln y

Inverse y =
a

x

1

y
=

x

a
x vs 1

y

Square
offset y = ax2 + b y = a(x2) + b x2 vs y

Root /
Cubic y =

√
ax3 + b y2 = ax3 + b x3 vs y2

Maximum likelihood method (MLE)
Determines the parameters of a probability distribution
that best describes a dataset, independent of histogram
binning.
Likelihood function
Defines as the product of probability densities for all data
points:

L(σ, µ) =
∏
i

f(xi, σ, µ)

Log-likelihood
To simplify calculation and avoid small numbers, mini-
mize the negative logarithm:

− logL = −
∑
i

log(f(xi, σ, µ))

Common distribution
Normal distribution:

f(x) =
1

σ
√
2π

exp
(
−1

2

(
x− µ

σ

)2
)

Weibull distribution (Reliability):

f(x) =

{
λk(λx)k−1e−(λx)k , x > 0

0 else

Weibull cumulative distribution function

F (x) =

x∫
−∞

f(u) du =

{
1− e−(λx)k for x > 0

0 else

SW4: Modelling with ODEs
Fundamentals of ODEs
An ODE contains functions of one independent variable
and their derivatives.
Ordinary (ODE)
Involves one independent variable:

d2x

dt2
= −g

Partial (PDE)
Involves multiple independent variables:

d2u

dt2
= c2

d2u

dx2

Analytical solution method
Separation of variables
Used when terms involving y and x can be moved to op-
posite sides.
Variation of parameters
Used for inhomogeneous linear ODEs. General solution
is the sum of the homogeneous solution and a particular
solution.
Numerical solution methods
Euler method
A simple iterative method to approximate ODEs defined
as df

dx
= g(x).

The approximation uses the finite difference slope:
df

dx
≈ f(x0 +∆x)− f(x0)

∆x
Iterative steps:

f(x0 +∆x) = f(x0) + g(x0)∆x

Modelling principles
Balance equations
Based on the conservation principle:

d

dt
f(t) = f(tα)− f(tω)

Example in a capacitor

U0 = UR + UC ⇒ U0 = RI +
Q

C
= R

dQ

dt
+

Q

C

Mechanics and forces
Equation of motion is derived from Newton’s second law
Fnet = ma.
Example of a falling drop with drag

mv̇ = mg − bv ⇒ v(t) =
mg

b

(
1− e−bt/m

)
Growth and decay
Describes processes where a quantity increases or de-
creases over time.

dN

dt
= kN ⇒ N(t) = N0e

kt

with half-time / doubling factor τ :

τ =

∣∣∣∣ ln 2

k

∣∣∣∣
Example of logistic growth

dN

dt
= KN(t)− K

K
N2 ⇒ N(t) =

L

1 +
(

L
N0

− 1
)
e−kt

Recipe to derive the equation of motion
1. Make a sketch of the situation;
2. Define the coordinate system and select variables of

interest;
3. Identify all forces and momenta;
4. Formulate the equation of motion;
5. Solve it.
Linear algebra and systems of ODEs
Matrix representation
System of equations:

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

Matrix form (Ax = b):a11 a12 a13
a21 a22 a23
a31 a32 a33

x1

x2

x3

 =

b1
b2
b3



If x =

x1

x2

x3

, then ẋ =

ẋ1

ẋ2

ẋ3



3

Matteo Frongillo Systems Modelling Cheat Sheet
Inversion and diagonalization
Inverse matrixR−1: R ·R−1 = I (Identity matrix).

I =

1 0 0
0 1 0
0 0 1


Diagonalization: Special matrices can be rewritten as:

A =

λ1 0 0
0 λ2 0
0 0 λ3


This transforms the matrix into a diagonal matrix con-
taining eigenvalues λ.
Why is it called linear algebra
Linearization:
Complex, non-linear functions can be approximated by
linear functions in a small neighborhood of a point a:

f(x) ≈ f(a) + f ′(a)(x− a)

Benefit of solving ODEs
If A were a number, ẋ = Ax would solve to x(t) = keAt.
Since A is a matrix, if we diagonalize it using eigenvalues
λ, the solution becomes a mixture of exponentials:

x(t) = R−1

k1e
λ1t 0 0
0 k2e

λ2t 0
0 0 k3e

λ3t

R

Solvability of linear systems
Geometric interpretation:
Solving Ax = b is finding the intersenction of
lines/planes.

• Case 1, consistent: lines intersect at exactly one point;
• Case 2, inconsistent: lines are parallel and distinct,
there is no solution;

• Case 3, infinite solutions: lines are identical and over-
lap completely.

Determinant
A scalar value derived from a square matrix that tells us
if it is invertible. If detA = 0, the matrix is not invertible.
2x2 formula: ForA =

[
a b
c d

]
, detA = ad− bc.

3x3 formula: ForA =
[a b c
d e f
g h i

]
,

detA = a11 det
[
e f
h i

]
− a12 det

[
d f
g i

]
+ a13 det

[
d e
g h

]

detA =

n∑
j

a1jC1j, C1j = (−1)1+j detAij︸ ︷︷ ︸
Cofactors

The Eigenvalue problem
For a square n×n matrix A, we look for a Eigenvector x
and a Eigenvalues a such that:

Ax = λx

Calculation method:
1. Solve the characteristic equation det(A− λI) = 0
2. This result in an n-th order polynomial (a1λn+ . . . = 0)
3. The roots of this polynomial are the Eigenvalues.
SW5-10: Modelica
Equation-based modelling
Describes a system by using physical relationships.
Problem definition - Double layer wall
A wall consists of two layers with different thermal con-
ductance values G1 and G2.
We consider two steady-state cases:
1. A heat flow Q̇1 passes througs the wall and the right

temperature is T2. The interface temperature Ti and
the left temperature T1 are unknown.

2. Both boundary temperatures T1 and T2 are given and
the interface temperature Ti and the heat flow Q̇ are
unknown.

Formulas
Heat conduction equation [W]:
Q̇ = G∆T = G (Tα − Tω) = G1 (T1 − Ti) = G2 (Ti − T2)

Thermal conductance [W/K]:

G =
A

L
λ

Conservation of energy:
Q̇1 = Q̇2 = Q̇

Component-based modelling
Instead of rewriting equations each time, an instance of
the needed physics law component is added.

Thermal components
thermalConductor
Models heat linear heat flow between two ports
determined by a constant thermal conductance
G

Q̇ = G (Ta − Tb) ; Q̇ =
λ ·A
L

fixedHeatFlow
A source that injects a constant heat flow into
the connected component

port.Q̇ = −Q̇component
fixedTemperature
Defines a constant temperature boundary con-
dition (acting like an infinite heat reservoir).

port.T = Tparameter
heatCapacitor
Thermal mass that stores energy, where tem-
perature changes based on heat flow and heat
capacity C.

C · dT
dt

= m · cp ·
dT

dt
= Q̇

convection
Models the heat transfer between a solid surface
and a moving fluid based on a convection coef-
ficient Gconv.

Q̇ = α ·A ·∆T = Gconv · (Tsolid − Tfluid)
temperatureSensor
Measures the absolute temperature at the ther-
mal port and outputs that value as a real signal.

y = Tport ; Q̇ = 0

Electrical components
resistor
Resists the flow of electric current, creating a
voltage drop proportional to the current.

U = R · I ; Q̇ = P = U · I
constantVoltage
An ideal voltage source that maintains a con-
stant voltage difference between its prositive
and negative pins.

uport = Uconst
ground
Defines the reference potential (zero voltage) for
an electric circuit.

uport = 0

4

Matteo Frongillo Systems Modelling Cheat Sheet
Signal components

pulse
Generates a signal that alternates between two
values (amplitude and offset) with a defined pe-
riod and pulse width.

y =

{
offset + ampl., if ∈ pulse width
offset, otherwise

constant
A signal source that outputs a fixed numerical
value.

y = k
gain
A signal block that multiplies the input signal u
by a constant parameter k to produce the output
signal y.

y = ku
onOffController
A logical controller that switches its output be-
tween true and false based on comparing a
measured signal u to a reference value.

y =

{
true if u < (reference− bandswitch

2)

false if u > (reference− bandswitch
2)

booleanToReal
Converts a Boolean signal into a Real float num-
ber.

y =

{
realTrue if input is True
realFalse if input is False

Dynamic systems
Two things can lead to time-varying behavior:
1. Transient boundary conditions
2. A dynamic system starting from a non-eq. state
First-order thermal model
A mass is heated by a constant source while simultane-
ously losing heat to a cooler environment

Conservation of energy at the central node:

C · dT
dt

= Qin −G (T − Tsink)

Multi-domain modelling
Multi-domain model
Allows representing different physical domains such as
electrical, mechanical, thermodynamic, and fluid dynam-
ics in a single model.

Resistor heat interacts with the thermal system
Cyber-physical model
A model combining physical domains with a software.

One-dimensional model
Simulation technique used to calculate spatial distribu-
tion by discretizing a continuous object into multiple dis-
crete, lumped segments.
About Modelica
Definition and structure
Open source, equation-based, non-casual language for
modelling dynamic behavior of multidisciplinary sys-
tems. Component-based (graphical connection), object
oriented (inheritance), and hierarchical.
Equation-based / non-casual modelling
• Component diagram: topological (physical) structure;
• Equation-based: no fixed input/output direction;
• Connections: represent physical wiring/piping;
• Pros: reusable, multi-domain, closer to physics.
Casual modelling
• Block diagram: represents computational data flow;
• Assignment-based: fixed input/output;
• Connections: represent signal flow variables;
• Cons: prone to errors when modifying structure.

Hierarchical structure
Components are built from connected subcomponents
and/or equations, allowing complex systems to be bro-
ken down into reusable parts.
Object-oriented
Allows creating general base definitions (superclasses)
that specific components extend, rather than defining
every component from scratch.
Physical mapping
Icons represent physical components, connections rep-
resent actual physical couplings.
Application examples
• Multiphase flow: refrigeration systems;
• Multi-domain: Pneumatic piston pump;
• Compressible media: Medical pulse wave analysis.
Examples wrap-up
Thermal circuit

dE

dT
=

dU

dT
= m · c · dT

dt
= Q̇

Heat flow

Heaten up rod

Physical units
Heat flow Q̇ [W] Heat capacity C [J/K]

Thermal conductivity λ [W/mK] Thermal conductance G [W/K]

Specific heat capacity cp [J/kgK] Convection coefficient α [W/m2K]

SW11: Model and control energy systems
Energy systemmodel
Model dynamics of energy systems to study consump-
tion peaks, self-sufficiency and storage sizing, planning.
How to build an energy systemmodel
Single building
Component list + properties; hydraulic connections; us-
age profiles; pricing information.
Quarter/community/city
Single-building info for ALL buildings + grid/connection
properties + control scheme (balance demand/supply).

5

Matteo Frongillo Systems Modelling Cheat Sheet
Main challenges in energy systemmodelling
Acquiring
Layout, parameters, installed-component details,
control-system detailsm shading/clouds, usage profiles.
Modelling
Reliable component behavior and coupling, environ-
ment interaction (solar/shading/clouds, wind shielding,
contributions from neighboring buildings).
Models availability
Software frameworks
Built-in, pre-made models for specific component types.
Simplified models
Basic blackbox representation:

input outputmodel

Literature
Models taken from published research and publications.
Data-science models
Models learned or fitted from data.
White-/Grey-/Black-box models
• White box: theory-based, parameters from measure-
ment or ab initio calculations;

• Grey-box: simplified theory, parameters estimated
from data;

• Black-box: fit a model and parameters (data-based).
White-box

Each white-box model is a digital twin, but not all digital
twins are white-box models.
Digital twin
Virtual representation that serves as the real-time digital
counterpart of a physical object or process:
• Detailed: detailed, ab initio / measured parameters;
• Simplified: key mechanisms, simple assumptions;
• Numerical: fitting data, parameters are fitted.
Heat pump modelling example (white to gray box)
Evaporator and condenser cycles, refrigerant dynamics,
expansion valve control algorithm. COP dependence, in-
terpolate experimental data with non-linear regression.

Grey-box example (1st order building / RC idea)

C
dTroom

dt
= Q̇ES + Q̇int + g I(t)−H (Troom − Tambient)

Black-box example (wind turbine power curve)

P (w) =
a

1 + exp
(
−b · (w − s)

)
Control schemes overview
Control events = CE;
Control decisions = CD;
Control signal = CS.
• Rule-based: CE are chosen based on a rule-set;
• Model-based: predict the future behavior based on a
model and decide such that the model performs best;

• Neuronal network-based: trains a neuronal network
to take CD and act accordingly;

• A posteriori optimisation-based: takes historic data
and optimise CD.

Rule-based
Fixed time plan controllers
CE are chosen based on a fixed time schedule.
Model predictive controllers
CE are chosen based on model prediction of system dy-
namics.
Set point controllers

CE is triggered if the target quantity
is leaving the set point corridor. Ex:{

ON if Troom < 19.5◦C

OFF if Troom > 20.5◦C

Feedback based controllers – P & I & D
CE are initiated based on the interaction with the con-
trolled quantity. We have P, PI, PID controllers.

A PID-type controller computes the actuator command
u(t) from the error e(t) = r(t)− y(t)

u(t) = KP e(t)︸ ︷︷ ︸
P

+KI

t∫
0

e(τ) dτ

︸ ︷︷ ︸
I

+KD
d

dt
e(t)

︸ ︷︷ ︸
D

• P: reacts immediately to error:
Bigger KP → faster response, but can overshoot /
oscillate and typically leaves a steady-state error;

• Integral: accumulates error over time:
Removes steady-state error (drives output to the set-
point), but makes the response slower and can in-
crease overshoot and “windup” if not handled.

• Derivative: reacts to how fast the error is changing:
reduces overshoot and improves settling, but is sensi-
tive to measurement noise.

Graphical representation

The plot shows the closed-loop step response over time
of the same plant controlled with different controllers
with setpoint at 1.
• P: rises quickly but settles below 1→ steady-state error
remains;

• I: rises very slowly but eventually reaches (and may
slightly exceed) 1 → zero steady-state error, poor
speed;

• PD: faster than P and with less overshoot / better
damping, but still can have steady-state error;

• PI: reaches 1 but shows overshoot and slower settling;
• PID: fast rise, small overshoot, good settling, and zero
steady-state error.

6

Matteo Frongillo Systems Modelling Cheat Sheet
SW12: Design and analysis of experiments
Design of experiments (DoE): systematics sweep of pa-
rameter space when no fully-analytical optimum is avail-
able. Build an empirical model y = F (x) from sampled
runs and use it for optimisation.
Setup of simulation study
Aim: what do you want to archieve?
• control optimisation for given energy
• retrofitting of existing energy system by adding or re-
placing technologies

• design of novel energy system
Quantification: choose KPI / cost function.
• total energy consumption
• cost for energy provision
• share/amount of renewable energy
Decision variables: which variable can be influenced.
• Ex: size, orientation, capacity, ...
Measure of success: optimal configuration with re-
spect to the KPI.
• Ex: among all system configuration we find the solu-
tion with highest share of renewable energy

Coarse workflow
1. Calculate total / monthly energy demand;
2. Calculate production for different sizes of the system;
3. Calculate share of renewable energy;
4. Pck optimum solution
Challenges: energy demand has to be fulfilled in each
time point unless large storage system is considered.
Storage capacity of battery often heavily overestimated.
Detailed workflow
1. Setup system simulation;
2. Select different system sizes;
3. Run simulation measuring total and renewable en-

ergy consumption and calculate share of renewables;
4. Visualise the results;
5. Pick optimum solution.
Challenges: requires detailed knowledge about the
building and the demand profiles, variable values for the
system size is typically selected at random.
Visualisation of results
• Display the sare of renewable energy versus systems
size;

• Select for the system size the optimum value and plot
the two graphs.

How to model a system (SW2)
Task 1 - Defining goarls
What do we want to archieve? → Aim
Task 2 - Characterize the system
What are the relevant parameters and variables of the
system? → Variables / KPIs
Situation analysis
• System boundaries:
– Depend on the question that needs answering;
– Should include all parts with strong back-reaction;

• Structure of the system under consideration;
• Characterization of the influencing environment;
• Interpretation of actual state (SWOT);
• List of general restrictions / conditions;
• Summary of problem definition.
Impact of system parameters
Problem framing & sources of parameter influence
• What is the problem?: Example:
exernal / non-controllable parameters may change the
optimal solution sustainability;

• Where do these effects come from? Example:
thermal energy storage integration in residential heat-
ing system with PV system and heat pump;

• Where is the parameter effect? Example:
depending on utility or collaboration model, the com-
pensation for PV injection is different.

Pitfalls of visualisation approach
Parameters may have:
• co-dependencies;
• exclusive effect (one counteracts the second);
• infinitely many solutions.
Design of experiment (DoE)
Why do we need to design an experiment?
Analyticalmodels are rare; optimisation typically involves
many options and parameter ranges.
Impact of variability on DoE
Factor values and execution of experiments may have a
major effect on results.

Typical steps of a DoE

Basic principles of DoE

Comment on factor selection

Choice of experimental design model
Empirical model. First-order polynomial:

y = β0 +

I∑
i=1

βixi + ϵ

x’s are design factors, y’s are responses, βi are parame-
ters to be estimates, main effects are evaluated.
First-order with interactions:

y = β0 +

I∑
i=1

βixi +

I∑
i=1

J∑
j=i=1

βjixi · xj + ϵ

Second-order model: Adequate for optimisation.

y = β0 +

I∑
i=1

βixi +

I∑
i=1

J∑
j=i=1

βjixi · xj +

I∑
i=1

βiix
2
i + ϵ

Regression model: data collected from experiments
used for finding β, which are used in turn to estimate the
response variable ŷNEW for new combination var. xNEW

7

Matteo Frongillo Systems Modelling Cheat Sheet
Full factor design
Used in experiments involving several factors and per-
formexperiments on all possible combinations of the lev-
els of all the factors. When Levels are considered for K
variables, the total Number of experiments: N = LK

SW13: Optimisation - Linear programming
Linear programming (LP)
Definition
Linear programming is an optimization technique for
problems with linear cost function xopt = max

(
aTx

)
under the side conditions given by linear (in)equations

x1 ≤ 10, x1 + x2 ≥ 3, x1 + x2 + x3 = 5

Why is LP relevant?
Energy system operation schedules, energy saving po-
tential by novel technologies, trading applications, rout-
ing of cars, busses, goods in a process.
Prerequisites
Linear and single cost function to optimize, linear con-
straints, continuous variables.
Controller vs Linear programming
Controller
Decides based on current, historic, or predicted data.
Linear programming application
The optimum solution for a full period is investigated as-
suming perfect knowledge of the past, present, and fu-
ture.
Graphical solution of linear programs
Solving more complex systems
1. Identify the area of permitted variable combinations:
2. Find lines of constant cost function;
3. Optimize the cost function.

Optimisation of a national energy system
1. Variables, cost function and boundary conditions;
2. Energy system simulation;
3. System design + challenges;
4. Model setup;
5. Simulation results and optimized energy flows.

The simplex algorithm
Real-world LP problems involve very large numbers of
variables and constraints, making graphical methods im-
practical. The simplex algorithm efficiently solves such
problems by moving along the edges of the feasible re-
gion, each time selecting the direction that most im-
proves the cost function, until no further improvements
is possible.

SW14: Mixed-integer (MILP) and NLP
LP vs MILP vs NLP
Linear Programming (LP)
In LP, one assumes that the variables are continuous:

xi ∈ R
Mixed-Integer Linear Programming (MILP)
In reality, variables can only be integers:

wi = ⌊xi⌋, wi ∈ Z

Non-Linear Programming (NLP)
Non-linear programming is an optimization technique
for problem with non-linear cost function xopt =
max(f(x)) under the side conditions given by the non-
linear (in)equations

x1 ≤ 10, x1 + x2 ≥ 3, x2
1 + x2

2 ≤ 10

Note that either the function or the constraints or both
can be non-linear

Non-Linear Programming optimization
Application
NLP is used where the cost function and/or the con-
straints are non-linear, such as:
• Capital cost of devices like power plants;
• Optimizing a solar PV installation and using the inclina-
tion and orientation of the panels as variables;

• Optimization of wind turbine power output, depending
on the height or radius of the generator.

Lagrange multipliers
If we have a function

f(x1, . . . , xn)

and a boundary condition
g(x1, . . . , xn) = 0

then we can define a new function:
L(x1, . . . , xn, λ) = f(x1, . . . , xn) + λ · g(x1, . . . , xn)

The optimized variables are given by the sistem of equa-
tions: 

∂L
∂x1

=
∂f

∂x1
+ λ

∂g

∂x1
= 0

∂L
∂x2

=
∂f

∂x2
+ λ

∂g

∂x2
= 0

...
∂L
∂λ

= g(x1, . . . , xn) = 0

Additions
A system is the mix of elements that interact together.
A model is a generalized abstraction of reality.
Systems modelling is the abstract and generalized way
of show the interaction between elements.

8

	SW 1: Introduction
	Model's three properties
	Digital representation
	Digital model (simulation)
	Digital shadow
	Digital twin

	Role of time
	Stationary behavior
	Dynamic behavior

	Governing dynamics
	Empirical (black box)
	Physics-based (white box)
	Grey-box (hybrid)

	Role of space
	Point model (0D)
	Linked point
	Spatial model (1-3D)

	Solvability of models
	Analytical
	Numerical

	Further modelling properties
	Linear vs Non-linear
	Continuity vs Differentiability
	Deterministic vs Stochastic

	Modelling approaches
	Top-down
	Bottom-up

	SW2: How to model a system
	Problem formulation
	Task 1 - Defining goals
	Task 2 - Characterize the system
	Task 3 - Simplify and idealize the system

	Mathematical formulation
	Task 1 - Identify fundamental theories and laws
	Task 2 - Derivation of relationships
	Task 3 - Reduce to standard mathematical problem

	Interpretation and evaluation of the results
	Task 1 - Calibration of results
	Task 2 - Validation

	SW 3: Data-based modelling
	Linear regression
	Least squares method
	Optimal parameter formulas
	Quality of fit (R2)
	Multilinear regression

	Non-linear regression
	Linearization techniques

	Maximum likelihood method (MLE)
	Likelihood function
	Log-likelihood
	Common distribution

	SW4: Modelling with ODEs
	Fundamentals of ODEs
	Ordinary (ODE)
	Partial (PDE)

	Analytical solution method
	Separation of variables
	Variation of parameters

	Numerical solution methods
	Euler method

	Modelling principles
	Balance equations
	Mechanics and forces
	Growth and decay
	Recipe to derive the equation of motion

	Linear algebra and systems of ODEs
	Matrix representation
	Inversion and diagonalization
	Why is it called linear algebra
	Benefit of solving ODEs
	Solvability of linear systems
	Determinant
	The Eigenvalue problem

	SW5-10: Modelica
	Equation-based modelling
	Problem definition - Double layer wall

	Component-based modelling
	Thermal components
	Electrical components
	Signal components

	Dynamic systems
	First-order thermal model

	Multi-domain modelling
	Multi-domain model
	Cyber-physical model

	One-dimensional model
	About Modelica
	Definition and structure
	Equation-based / non-casual modelling
	Casual modelling
	Hierarchical structure
	Object-oriented
	Physical mapping
	Application examples

	Examples wrap-up
	Thermal circuit
	Heat flow
	Heaten up rod
	Physical units

	SW11: Model and control energy systems
	Energy system model
	How to build an energy system model
	Single building
	Quarter/community/city

	Main challenges in energy system modelling
	Acquiring
	Modelling

	Models availability
	Software frameworks
	Simplified models
	Literature
	Data-science models

	White-/Grey-/Black-box models
	White-box
	Digital twin
	Heat pump modelling example (white to gray box)
	Grey-box example (1st order building / RC idea)
	Black-box example (wind turbine power curve)

	Control schemes overview
	Rule-based
	Fixed time plan controllers
	Model predictive controllers
	Set point controllers
	Feedback based controllers – P & I & D
	Graphical representation

	SW12: Design and analysis of experiments
	Setup of simulation study
	Coarse workflow
	Detailed workflow
	Visualisation of results

	How to model a system (SW2)
	Task 1 - Defining goarls
	Task 2 - Characterize the system

	Situation analysis
	Impact of system parameters
	Problem framing & sources of parameter influence
	Pitfalls of visualisation approach

	Design of experiment (DoE)
	Why do we need to design an experiment?
	Impact of variability on DoE
	Typical steps of a DoE
	Basic principles of DoE
	Comment on factor selection
	Choice of experimental design model
	Full factor design

	SW13: Optimisation - Linear programming
	Linear programming (LP)
	Definition
	Why is LP relevant?
	Prerequisites

	Controller vs Linear programming
	Controller
	Linear programming application

	Graphical solution of linear programs
	Solving more complex systems
	Optimisation of a national energy system

	The simplex algorithm

	SW14: Mixed-integer (MILP) and NLP
	LP vs MILP vs NLP
	Linear Programming (LP)
	Mixed-Integer Linear Programming (MILP)
	Non-Linear Programming (NLP)

	Non-Linear Programming optimization
	Application
	Lagrange multipliers

	Additions

