Chapter 2

Probability Theory

Everybody speaks of probability,
but no one is able to say what
it is, in a way which is
satisfactory for others.

(Garrett Birkhoff)

2.1 Introduction

In this chapter, we turn to models of discrete data. We refer to discrete data when
a measurement’s output yields a natural number. For example, let us consider the
following problems:

¢ We throw a die 300 times. How many times does the number 4 occur?
* We randomly select 100 men. How many of them are more than 173 cm tall?

In these cases, the measurement is taken once. If the measurement is taken a sec-
ond time, then the results differ from those of the first measurement. In the second
example, if the first sample randomly includes many gymnasts and the second mea-
surement randomly involves many basketball players, then there will very probably
be differences in the measured number of individuals more than 173 cm tall. But if
the measurement from the second example is repeated 1000 times, then the number
of individuals taller than 173 cm to be expected should emerge.

But can we theoretically predict how large the value of a future measurement will be?
To make such a prediction, we need models for the measurements. We assume the die
we toss is “fair”. Then we expect that with 1.2 million tosses, the number of times 4
appears is about 200.000. But it is absolutely possible, albeit very unlikely, that in all
these tosses, we never toss a 4. So, we have made an idealization, which in this case
is sensible. We also talk about modeling the problem. The predictions we can make,
however, are subject to uncertainties, and we can only state the probability that a result
occurs. In this case, the probability that we roll a 4 s ¢.
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Chapter 2 Probability Theory

Following is a physical example of these considerations, which should also serve as
our standard example.

The Alpha Decay

A radioactive nucleus that emits helium-4 atomic nuclei when decaying is called an
alpha emitter. The helium-4 nucleus emitted from the decaying nucleus is called an
alpha particle. This alpha particle is measurable. The emission of alpha particles from a
radioactive source within a given time unit is not constant but fluctuates randomly. So,
the emitter can emit 10 alpha particles within a 10-second interval, then no particles
at all during the next 10 seconds, followed by 100 particles during the next. A typical
alpha emitter is americium-241, a decay product of plutonium-241 that is common in
radioactive waste.

Number of decays observed | Number of experiments with observation
0-2 18
3 28
4 56
5 105
6 126
7 146
8 164
9 161
10 123
11 101
12 74
13 53
14 23
15 15
16 9
17+ 5

Table 2.1: Number of decays within 10 seconds and number of experiments (out of 1207 total) in
which the corresponding number of decays was observed.

An experiment measured the number of decays of americium-241 within a 10-second
interval. The experiment was repeated 1207 times, and each time the number of de-
cays within 10 seconds was measured. In Table 2.1, the first column lists the num-
ber of decays, and the second column shows how often this number of decays was
observed out of the 1207 experiments. For example, 0, 1 or 2 alpha particles were
measured in 18 of the 1207 experiments. 3 alpha particles were measured in 28 of the
1207 experiments.
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Chapter 2 Probability Theory

No physical law can forecast how many decays occur within a particular time interval.
But we can try to give the probability of each number of decays occurring within a
10-second interval. So, we strive to design a probability model for the alpha decay.

The question then arises of how to estimate the decay probabilities based on the data.
For example, what is the probability of measuring 12 decays within 10 seconds? Let
us represent the frequencies of the numbers of decays graphically. Let us consider
for this the histogram of our data (see the left side of Figure 2.1). We thus obtain
a so-called frequency distribution. We can for example read from this histogram that
in 74 experiments, 12 decays were observed. In this case, we speak of absolute fre-
quency. This number 74 referring to the observed number of experiments, however,
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Figure 2.1: Frequency distribution of alpha decay.

is rather meaningless apart from the mention of the total number of 1207 observed
experiments. This number can only be compared with difficulty to another series of
experiments, for example one involving 2389 experiments.

The relative frequency provides more information on a particular number of decays.
For this, we divide the (absolute) frequency of the experiments in which a particular
number of decays was observed by the total number of experiments carried out. This
then gives the percentage of experiments in which a particular number of decays was
observed.
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Chapter 2 Probability Theory

As we have seen in the chapter on histograms, the area of a bar corresponds to the
relative frequency of measurement values within the corresponding interval. We thus
read on the right side of Figure 2.1 that 7 decays happen within 10 seconds in about
12 % of the experiments. In this case, the total area of the bars yields 1.

This naturally leads us next to the concept of the probability of decay. So, we interpret
the relative frequencies of the observed numbers of decays per 10-second intervals as
the (estimated) probabilities: the probability that the respective number of decays is
observed within 10 seconds. In mathematics, probabilities are generally not given
as percentages but with number between 0 and 1. So, the probability that 7 decays
happen within 10 seconds is 0.12. The more experiments are carried out, the closer
this estimated probability is to the real probability. Furthermore, we determine that
all decays put together add up to 1.

We next wonder: How are these probabilities distributed by number? Does a mathe-
matical model fit the observed distribution of the relative frequencies and allow us to
then make predictions?

2.2 Probability Models

2.2.1 Basic Concepts

Let us consider random experiments where the output is not exactly predictable. Ex-
amples can be:

* the number of decays of an alpha emitter
¢ the result of the toss of a die

A probability model describes what results are possible with such an experiment
and what probabilities the different results have. The possible results on a die are
1,2,3,4,5, 6; the probability of tossing one of these numbers is 1/, as long as the die
is fair.

A probability model then lets us make certain predictions, which we can verify ex-
perimentally. For example, we can develop a good game strategy when gambling. A
probability model has the following components:

¢ Sample space (), comprising the elementary events w,
e Events A,B,C,...,
¢ Probabilities P
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Chapter 2 Probability Theory

Elementary events are possible results or outcomes of the experiments, which com-
bine to form the sample space:

Q) = {possible elementary events w}

NV
possible outcomes/results

Example 2.2.1

In the case of tossing the die, the random experiment’s possible results form the sam-
ple space:

Q={1,2,3,4,5,6}

The element w = 2 is an elementary event. It means the number 2 appeared when
the die was tossed. <

Example 2.2.2
In the case of the alpha decay, the sample space is defined by:

Q=1{0,1,2,34,...}

since any number of decays is possible within a 10-second interval. The elementary
event w = 6 means 6 decays were measured within 10 seconds. <

During an experiment, an elementary event is randomly “selected” from the set of all
elementary events (sample space).

Example 2.2.3 Tossing a coin twice

Let us use H for “head” and T for “tail” (this applies to the rest of the chapter). All
possible results when tossing a coin twice are then defined by:

Q={HH,HT,TH,TT}
where () is the sample space. An elementary event can be, for example, w = HT. <«
An event A is understood to be a subset of ():
ACQO

“An event A occurs” means the result w of the experiment belongs to A.
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Example 2.2.4 Tossing a coin twice

Let us toss a coin twice. Let us now consider the event A, where exactly one H is
tossed. This event comprises the elementary events HT and TH. Event A is then
defined by the set

A = {HT,TH}

If our tosses result in TT, then event A does not occur. |

Example 2.2.5 Tossing a die

Let the event A be “an odd number is tossed.” Then,
A=1{1,3,5}

Event A occurs when, for example, the number 5 appears on the die.

Let us call B the event that a number less than 7 is tossed. Of course, that is always

true. Therefore, in this case,
B=0O

We call this a certain event.

Furthermore, let C be the event “the number 7 is tossed.” That is impossible, and we
write

C=0
The symbol @ represents the empty set, which does not contain any element. In such
a case, we call the event an impossible event. <

When dealing with events, it is useful to recall the operations of set theory as well as
what they mean. In theory, operations (union, intersection, complement) are used to
obtain new events from predefined events (see Table 2.2).

Name Symbol Meaning
Union AUB AorB
Intersection ANB A and B
Complement A not A
Difference || A\B= ANB | A without B

Table 2.2: Operations in set theory.
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Remarks:

i. The “or” for the set operator union is not exclusive: So, an element can be in A
and in B. Colloquially, “or” is usually interpreted as “either... or...” However, that
does not apply when using “or” for the set operator union.

ii. The complement A can also be written as A°. ¢

Sets A and B are called disjoint if A and B are mutually exclusive and therefore
cannot occur simultaneously. In this case,

ANB=0

Hence this event is impossible.
De Morgan’s laws also apply:

1. ANB=AUB

2. AUB=ANB

Venn diagrams illustrate all these terms, operations, and rules quite simply (see Fig-
ure 2.2).

Figure 2.2: Left: AU B, Center: AN B, and Right: A

Example 2.2.6
Let us consider the events
e A: “the Sun will shine tomorrow”
e B: “it will rain tomorrow”
The operations then have the following meanings:

1. A U B: “the Sun will shine tomorrow or it will rain tomorrow”, and it can also
mean: “the Sun will shine tomorrow and it will rain tomorrow”.

2. AN B: “the Sun will shine tomorrow and it will rain tomorrow”
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3. A: “the Sun will not shine tomorrow”

2.2.2 Probability

We have seen in the introduction that it is rather difficult to define the concept of
probability precisely. It seems that in order to define it, one has to know already what
it means. In order to circumvent this difficulty, among other things, mathematicians
proceed axiomatically. This means that they do not even try to define explicitly what a
probability is. Instead certain properties (so-called axioms), which seem plausible, are
assumed, and one works with all statements wich follow from these axioms logically.
With this procedure, one has implicitly fixed the meaning of the concept of probabil-
ity, and any interpretation of it is fine, as long as it is consistent with the postulated
axioms.

The calculus of probability is based on the following three axioms:

Kolmogorov’s Probability Axioms

To each event A a real number P(A) € R is assigned as a probability. This assign-
ment must satisfy for all events A and B:

Al: P(A) >0
A2: P(Q) =1
A3: P(AUB) =P(A)+P(B) ifANB=0

Remarks:

i. The notation P(A) refers to the probability that event A occurs. Let A be the
event that an odd number is tossed on the die. Then, if the die is fair,

ii. The letter P stands for the word probability.
iii. Probabilities are never negative.

iv. With P(Q) = 1 one determines that the probability of a special event is equal to 1.
Together with the other axioms this implies that the probabilities of an arbitrary
event must be between 0 and 1. ¢
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Example 2.2.7

When tossing two coins, it is plausible that all 4 elements of
Q={HH,HT, TH,TT}
have the same probability. Since P(Q)) = 1, the probabilities must add up to 1. Hence:

P(HH) = P(HT) = P(TH) = P(TT) = |

<

Other laws can be derived from Kolmogorov’s three axioms. We list some examples:

Calculation Rules

Let A, Band A1, ... A, be events, then

=1—-P(A) for each A
= P(A)+ P(B) —P(ANB) forall AallB
A1) +...+P(Ay) forall A,..., Ay
for all A and B where BC A
— P(B) for all A and B where B C A

All true statements of probability theory can be deducted logically-algebraically from
the Kolmogorov-Axioms. This approach is followed by mathematicians. For us the-
seproofs are not so importand, but still the question whether certain statements are
true. This can be intuitively made clear using Venn diagrams.

In this approach, an event is represented as a region, and its area is interpreted as
probability. By definition, the total area of () is equal to 1, since we must have P(Q)) =
1 according to A2. The first rule A1l of the box above is illustrated in Figure 2.2 on the
right. Here, P(A) is the area of the region A, and P(A) is that of the green region. It
is then evident that

P(A)+P(A)=1]Q|=1
and thus

P(A) =1— P(A)

As an exercise, verify the other calculation rules.
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This chapter covers finite probability models, where the sample space is finite. This is
a special case of a discrete model, in which the results can be numbered using natural
numbers. For example, the set

a0={01,...,10}
is finite and therefore discrete, whereas
QO=Ny=1{0,1,2,...}
is infinite but stil discrete.

The set () = R is not discrete. We call it continuous instead, since the results can be
varied continuously or stepless. It will later play a very important role with regard to
the normal distribution.

In a finite probability space, the probability of each event determined by the probabil-
ities of all of its elementary elements. We have the

Sum Formula
The probability of the event

A={wy,wy, ..., wy}
is

P(A) = P(w;) + P(ws) + ...+ P(wy) = éP(wi) - ZAp(w)

This follows by repeated application of axiom A3.

Example 2.2.8

We have a die that is not fair. The probabilities of tossing different numbers are there-
fore not equal. The corresponding probability for each number is given in Table 2.3.  (®)

Hence

P(Q) = P(1) + P(2) + P(3) + P(4) + P(5) + P(6)
1 1 1 1 1 1
ARV REVREY

=1
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For the event A = {1,2,4} we have

=1 W

o =
I,

+

W[ =

P(Q) = P(1) + P(2) + P(4) =

Example 2.2.9

We toss a coin twice. Then the event A: “tossing H exactly once” is
A ={HT,TH}
For the probability P(A) that the event A occurs, we obtain

1 1 1
P(A)=P(HT)+P(TH) = it173
For the event B: “tossing at least one head”, we obtain as the probability that this
event occurs

P(B) = P(HT) + P(TH) + P(HH) = }L + }L ™ }L - Z

since B = {HT,TH, HH}. In this case, this probability is easier to calculate with the
so-called complementary probability. The complement B of B is defined as:

B ={TT}
And this gives us, with the first calculation rule (see above):

P(B)=1-P(B)=1- ;="

Interpretation of Probabilities

In probability theory, often the probabilities of particular events A are defined (based
on plausibilities, symmetry considerations, scientific theories, expert knowledge, and
data), and then certain probabilities are calculated using the rules above.

Statistics works in reverse: From data, i.e., from the information that ceertain events
have occurred, one tries to draw conclusions about an unknown probability model
(unknown probabilities).

There are different interpretations of the concept of probability:
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* Frequentist: “Limit” of the relative frequency of the occurrence of the event in
many independent repetitions

By measuring alpha decay (experiment), we conclude that in 12 % of observa-
tions, 7 decays occur within 10 seconds. So, for example, in 12 experiments out
of 100 total, 7 decays were observed.

* Bayesian: Measure for the belief that an event occurs

“I am 90 % sure that I will pass the next exam.”

Laplace-Model

In many cases, it is plausible to assume every elementary event has the same prob-
ability. An example of such a probability model is called the Laplace model. The
standard example for this is the toss of a fair die. Each number then has a probability
of 1/ of showing up on the die. In this case, the determination of probabilities reduces
to counting.

The sample space () of the Laplace model has m elementary events. If all these ele-
ments have the same probability, then from the sum formula implies

1
P(Q) = P(w) =mP(w) = Plw)=—
a);ﬂ m
If the event E consists of g different elementary events
E={wi,wy,... we}
then we have
1 1 1
P(E) = P(wy) + P(wz) + - - —i—P(wg)———i—a—i— +E

Laplace Probability
For an event E in the Laplace model we have

_E

PE) =g

where |A| denotes the number of elements of the set A.

4

This result is colloquially formulated as follows: we divide the number of “favorable
elementary events by the number of “possible” elementary events.
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Example 2.2.10

Two fair dice are tossed. What is the probability that the sum of the numbers on the
dice is 7?

An elementary event describes the numbers shown on the two dice. We can write this
event in the form (1,4) when 1 appears on one die and 4 appears on the other. There
are 36 possible elementary events in all:

0=1{(1,1),1,2),...,(6,5),(6,6)}

Let us define as E the event that the numbers add up to 7. There are 6 such elementary
events:

E={(1,6),(25),(3,4),(43),(52),(61)}

Since all elementary events are equally probable, the probability of event E is:

2.3 Combinatorics

Laplace probability requires that elements in events can be counted. This question
belongs to the field of combinatorics. In this section, we deal with permutations, com-
binations and variations. These counting methods are an important tool for solving
numerous problems in probability theory and statistics and can be illustrated very
clearly using the urn model.

2.3.1 Urn Model

There are n different balls in an urn, which are numbered consecutively or differ from
each other in color, for example. In the next sections, we want to study the question,
how many possibilities there are to draw a certain number of balls from this urn.

From the urn, k times a ball is drawn. We must distinguish between the following
cases:

a) Draw with replacement:
Each ball drawn is returned to the urn, before the next ball is drawn, and can
therefore be drawn again in subsequent draws. Each ball can therefore be drawn
several times (with repetitions).
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Draw without replacement:

Each ball drawn is not returned to the urn and therefore cannot be drawn again
in subsequent draws. Thus, each ball can be drawn only once (without repeti-
tions).

Furthermore, in both cases, we distinguish whether the order of the draws is taken
into account or not.

1.

With consideration of the order:

The order of the draws is taken into account, i.e., draws of the same balls are
distinguished if they are drawn in a different order. We then speak of a variation
of k-th order.

Without consideration of the order:

The order of the draws is not taken into account, i.e., draws of the same balls
are considered equal, no matter in which order they were taken. We then speak
of a combination of k-th order.

Example 2.3.1

From an urn with n = 10 balls, k = 3 are drawn. There are four variants:

la)

1b)

2a)

2b)

Draw with replacement and with consideration of the order: We note the num-
bers of the balls in the order in which they are drawn. This way, a list with 3
numbers grows which is mathematically called a 3-tuple. For instance, there
can be aresult (4,7,4), if ball 4 is drawn first, then ball 7, and finally ball 4 again.
This is possible, since the ball of the first draw was returned to the urn. The
result (7,4, 4) will be considered as a different result, since the balls were drawn

in a different order.
(4,7,4) # (7,4,4)

Draw without replacement and with consideration of the order: We represent
the results as in case 1a), but now no number can occur more than once, hence
the result (4, 6,4) is impossible.

Draw with replacement and without consideration of the order: We put the
balls back after drawing, but ignore the order in which they were drawn. It is
therefore useful to note the numbers in some standard order, for instance sorted
by size: If 7 is drawn once and 4 twice, then we note the result as (4,4, 7).

Draw without replacement and without consideration of the order: We do not
put the balls back after drawing, so repetitions are impossible. In this case, the
results can be considered as sets, since there is no order and no repetitions. For
instance, the results {4,7,5} and {7,4,5} are identical:

{4,7,5} ={7,4,5}

Again it is useful to note the numbers in sorted order: {4,5,7}
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<

We thus come across the terms variation and combination. In statistics, such a random
sampling of k balls is called a sample of size k. 1t is called ordered if the order in which
the sample elements (here: balls) are drawn is taken into account. However, if the
order does not play a role, the sample is called disordered.

2.3.2 Variations

We first consider variations, i.e., drawing with considering the order.

Example 2.3.2

From an urn with n = 10 balls, k = 3 are drawn. The order of the draws is taken into
account. In each case, we study how many different results there are.

a)

b)

Draw with replacement: In the first move we have n = 10 balls that we can
draw, and we write down the result first. Since we replace the ball drawn, in
the second move we have the same n = 10 possibilities. For each of the 10
results in the first move, there are 10 results in the second, so 10-10 = 10?
possible draws. For each of these results, there are again 10 possibilities in the
third move. Hence we have a total of

n-n-n=10-10-10 = 10°> = 1000

third order variations of 10 balls with repetitions.

Draw without replacement: In the first move we have the same n = 10 possi-
bilities. Since we do not replace the drawn ball, in the second move we only
have n —1 = 9 possible balls. The second drawn ball reduces the number of
remaining balls again, so that in the third move there are n — 2 = 8 possibilities.

Hence, there are
n-m—1)-(n—2)=10-9-8=720

third order variations of 10 balls without repetitions.

<

The product of the descending natural numbers in the last example can be expressed
using the factorial. The factorial of a natural number 7 is defined as the product of all
natural numbers from 1 to n, i.e.,

n=1.2---(n—1)-n for n>1
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For pragmatic reasons, one also defines

0'=1
This means that by expansion, the result from the last example can be written as
10-9-8-7-6---2-1 10! n!
10-9-8 = =— =
7-6---2-1 7' (n—k)!

Variations of k-th Order

From an urn with n different balls, k balls are taken one after the other and ar-
ranged in the order in which they are drawn. They form a so-called k-th order
variation.

1. k-th order variation with repetition: There are
Ve (1;k) = n*

different k-th order variations with repetition, where k > n is allowed.

2. k-th order variation without repetition: The number of k-th order varia-
tions without repetition is

Vimk)=n-(n—1)-(n—2)---(n—k+1) =

(n —k)!

where k < n must hold.

Example 2.3.3

With a combination lock, you can set four digits between 0 and 9. Normally exactly @
one setting is correct. However, the lock has a defect, so the second digit does not
have to be correct in order to open the lock. What is the probability that you can open
the lock by guessing a sequence of digits to open the lock? <

Solution. There are 10 digits and four are set. The order is important and repetitions
are possible. Therefore, a total of

m = Vy(10;4) = 10* = 10000

settings are possible. Since the second digit is not relevant, there are ¢ = 10 favorable
cases where the lock opens. Thus, the probability is

g _ 10 -3
< =_—=10""=10.001
m 10
that one can open the lock in the first attempt. O
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Example 2.3.4

In a horse race, 12 horses start. In a three-way bet, the first three places must be
predicted in the correct order. What is the probability of winning a three-way bet? «

Solution. From the 12 horses, 3 are drawn to occupy the first three places. The order
is therefore important, but repetitions are not possible. Therefore there are

12!
m=V(12;3) = m =12-11-10 = 1320

possible results on the first three places. Exactly one is set, so there is ¢ = 1 favorable

possibility. So the probability of winning is

g 1
_—= — ) . 7
m 1320 0.000758

2.3.3 Permutations

An important special case of a variation is the case k = n. This means that from
an urn, all balls are drawn. If the order is taken into account, then one speaks of a
permuation or arrangement.

Example 2.3.5

In how many ways can the n = 6 letters A, B, C, D, E, F be arranged? We number the
letters according to the alphabet and we think of them as balls in an urn. We draw
k = 6 times without putting them back. So we have

V(6;6) =6-5-4-3-2-1=6! =720

permutationen of the six letters. <
Up to now, we have always assumed that the balls in the urn are numbered consecu-
tively, i.e., that all balls can be distinguished from one another. Now we will drop this

assumption and consider the case that certain balls look the same and are therefore
indistinguishable.
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Example 2.3.6

Suppose we have 7 balls in an urn, of which 3 are red, 2 are green and 2 are blue.
How many arrangements of the balls are there, if we cannot tell the balls of the same
color apart? If, for the matter of argument, we imagine that the balls are numbered
consecutively, then with this distinction, there are

7!

permutations. But many of these are indistinguishable. E.g., if the balls 1 to 3 are red,
then
(6,1,3,7,2,4,5) and (6,2,1,7,3,4,5)

are indistinguishable. In general, from one permutation we obtain new ones by swap-
ping the red balls again. Thus, by permutation of the red balls, groups of 3! indistin-
guishable permutations are combined together. So there are

7!

3!
of these groups. By permuting the green balls, say balls 4 and 5, we combine 2! of
these groups each in a new one. Hence there are

7!
3! 2!

new groups, where the blue balls are distinguished yet. By permuting these, a num-
ber of

7! 7-6-5-4
srat 2 2.2 0=
groups of permutations emerge, which are completely indistinguishable. <

Permutations of n Elements

Every possible arrangement of 1 elements is called a permutation of the elements.

1. If all n elements are pairwise distinct, then the number of permutations is

P(n)=1-2-3---(n—1)-n=n!

2. If among the n elements, groups of ny,ny, ..., ny each are equal, then there

are
n!
P(n;nl,nz,...,nk) — ﬁ
nying:l - - - Ng.

different permutations. Here, we have n; +mn3 + - - - + 1 = n.
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The factorial of n grows very quickly with n, namely exponentially. It is therefore
best to calculate factorials with Python. The library math provides the method
math.factorial() for this purpose.

import math
print (math.factorial(6))

print (math.factorial (7)//
(math.factorial (3) *xmath.factorial (2) *xmath.factorial (2)))

720
210

Note that we have used the integer division // here, so that the result is of the data
type int.

For the number of variations without repetition, there is the method math.perm().
import math

print (math.perm (10, 3))
print (math.factorial (10)//math.factorial (7))

720
720

2.3.4 Combinations

We now turn to drawing without taking the order into account, the so-called combina-
tions.

Example 2.3.7

From an urn with n = 10 balls, k = 3 are drawn without putting them back. The
order of the draws is not taken into account. If, for the sake of argument, we do take
the order into account, then we have, according to Example 2.3.2 b)

10!

V(10;3) = -

draws. If we permute the 3 balls in such a draw, we get one that differs only in

the order. We now want to consider those as identical. Therefore, the draws are
summarized in groups of 3!, so their total number is divided by 3!. Thus, we obtain

10! n!

73 Rk
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suhc groups. These correspond to combinations without repetition.

Since, in this case, the result can be interpreted as a set, this means that from a set

with 7 = 10 elements 101 '
! n!
= =12
713 =k 2

subsets with 3 elements can be constructed. |

The formula from the last example is so important that it deserves a name. We call

10\ 10!
3/  71.31

a binomial coefficient and pronounces it “10 choose 3”. Note that this is not a vector.

Example 2.3.8

Another argumentation for the result from Example 2.3.9 uses the result about per-
mutations of elements, some of which are indistinguishable. It can be argued that by
drawing k = 3 from n = 10 balls, these are divided into two groups: the drawn and
the undrawn. those drawn and those not drawn. Instead of saying, for example, that
balls 3, 4 and 7 were drawn, you can also place three red balls at squares 3, 4 and
7, and one green ball each on all other 7 squares. Hence, the number of possibilities
corresponds to the number of permutations of n = 10 balls, of which n; = 3 are red
and np = 7 are green, these are

n! 10! n! n
PAGS,7) = o ~ a7 K-(n—k)! <k)

<

The most difficult case is the case of combinations with repetition. We could try, in a
similar way as above, to first count under consideration of the order and then group
together the indistinguishable draws. However, as there may be repetitions, these
groups are not all of the same size. For example, in the draw (6,4, 8), by permutation
of the 3 different elements, 3! = 6 draws are combined, but in the draw (6,4,4) there
are only 3 different ones.

Example 2.3.9

From an urn with n = 10 balls, k = 3 are drawn with putting them back. The order
of the draws is not taken into account. Therefore, we can sort the drawn numbers
and obtain a sorted sequence of three numbers between 1 and 10, possibly with rep-
etitions, for example (3,3,9). If we now add 1 to the second number and 2 to the
third number, we obtain three different numbers between 1 and 12, in our example
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(3,4,9). So the total number of draws is equal to the number of sorted sequences of
3 numbers between 1 and 12. This is the number of third order combinations of 12
elements without repetition, and of these there are

12 n+k—1 12!
(3)—( k )—@—m

Combinations of k-th Order

From an urn with n different balls, k balls are drawn one after the other, where we
do not regard the order in which they were drawn. The k balls drawn (arranged
in any order) then form a combination of k-th order.

1. Combinations without repetition

There are \
n n!
Cln:k) = (k) k- (n—k)!

combinations k-th order without repetition, where k < n must hold.

2. Combinations with repetition
There are

Co(niK) = (n—l—l;—l)

different k-th order combinations with repetition, where k > n is possible.

For binomial coefficients we have the method math.comb ().

import math

print (math.comb (10, 3))

print (math.factorial (10)//
(math.factorial (7) »math.factorial (3)))

print (math.comb (12, 3))

120
120
220

Example 2.3.10

We consider the lottery, where 6 out of 42 are drawn without putting them back. The
order of the numbers is irrelevant.

a) What is the probability of a six, i.e., that all the numbers picked are correct?
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b) What is the probability of three correct numbers?

Solution. a) We consider combinations with repetition, so there are a total of

C(42;6) = <462)

results. Precisely one of these was was picked, so the probability for a six is

1
42y
(%)
We calculate it with Python :

import math
print (1/math.comb (42, 6))
1.9062920218247562e—-07

Thus, the probability for a six is roughly 2 - 1077, hence 0.2 Millionsth.

o 42
o\ 6
possible draws. If (exactly) three of the picked numbers are to be correct, then

you can select 3 different numbers from the 6 picked ones, which should be cor-
rect. The order of this choice does not matter, and repetitions are not possible.
Therefore, there are for (g’) possibilities. The remaining 3 numbers must be wrong,
otherwise you would have more than 3 correct numbers. For each choice of the 3
correct numbers therefore 3 can be drawn again from the remaining 42 — 6 = 36
incorrect numbers. For this there are (336) possibilities. So there are

=) (5)

favorable possibilities. Thus, the probability for three correct numbers is

b) Asabove, we have

Again we calculate it with Python :
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import math

print (math.comb (6, 3) *math.comb (36, 3))
print (math.comb (6, 3) *math.comb (36, 3) /math.comb (42, 6))

142800
0.027221850071657516

Hence, the probability for three correct numbers is more than 140’000 times the
one for a six.

O

Educational objectives

0 You know the three axioms of probability theory and their most important conse-
quences.

[J You can determine the correctness of statements about probabilities with the help
of venn diagrams.

[J You can deal with events, their set operations, and their probabilities.

[J You know the urn model and are able to distinguish between drawing with/with-
out replacement and with /without considering the order of the draws.

[J You can calculate the number of variations, permutations, and combinations and
with that probabilities.

Computer-based educational objectives

You are able ...

[J to simulate the repeated execution of a random experiment using Python and
represent relative frequenceies using bar plots.

[J to calculate combinatorial quantities and related probabilities with Python .
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