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1 Introduction to energies, fluids, and processes

Energy exists in different forms and can neither be destroyed nor generated, but only transformed.

1.1 Energy forms

Potential energy: E = mgh

o Kinetic energy: E = %va

o Thermal energy: E = mcpyAT
e Light energy: F = hv

2 Fluids as energy carriers

Fluid definition

2.1.1 Properties of a fluid

e Chemical energy: E =mH

o FElectrical energy: F = kw

o Nuclear energy: E = Amc?

e Pressure energy (acoustic): F

Density p
Densitiy is a measure of working potential of a fluid:
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Kinematic viscosity v
Viscosity is a measure of the specific loss capacity of a fluid:
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e i = dynamic viscosity

e p = density
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Viscosity of a liquid fluid decreases with increasing temperature, while viscosity of a gaseous fluis increases
with increasing temperature.
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Compressibility
An increase in pressure on a given fluid mass causes compression and thus lead to a reduction in volume.

Mach number is a non-dimensional number that relates the fluid velocity to the sound velocity (in air):

M =

u
C

Note: Since Mach number normally is very small, it can be neglected from calculations.

2.2 Real and ideal fluids

2.2.1 Real fluid

All fluids are real fluids and have real fluid properties. This means that they are compressible and exhibit
frictional losses during the flow process. Physically, this means they have a viscosity v > 0.

2.2.2 1Ideal fluid

A fluid can be simplified as an ideal fluid assuming a constant density (incompressible) and a viscosity v = 0
(frictionless).



2.3 Technical application flows
2.3.1 Internal flow (flow through)
Fluids that flow through a body (pipes, ducts, machines, ...).

Internal losses (such as friction, pressure, and fluid force) are relevant for the calculation of internal flows.

2.3.2 External flow (flow around)
Fluids that flow around bodies (motor vehicles, aircraft, buildings, ...).

External losses (such as velocity, pressure, density, and temperature near and far from bodies) are relevant for
the calculation of external flows and aerodynamics.

2.4 Forces for fluid motion

2.4.1 1D flow in z direction

x '

kg

Surface forces act on the interfaces of a fluid body and are introduced by direct contact of the environment.
Fluids also cause surface forces on their surroundings.

Forces decomposition
Surface forces:

e F; =7 A: shear force (tangential to the surface);
o F, =p- A: fluid pressure force.
Body forces:
o Fy=F-g-cosf: gravitational force (perpendicular to the surface);
e F,=—F-g-cosf: normal force (perpendicular to the surface);
e F,: inertial force.
Inertial forces will always destabilize the flow field.

Viscous forces will always stabilize the flow field.



2.5 Laminar and turbolent flow

A flow that flows in an orderly manner is called laminar flow. In contrast, flows with vortices are called turbolent
flow.

Turbulent
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Laminar
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2.5.1 Reynolds number

Reynolds number is a non-dimensional number that makes the distinction between laminar and turbolent flows
possible. The Reynolds number is given by the relation between inertial forces and viscous forces:

Re =

14

where:
. m
e v: velocity [—};
s

e L: characteristic length [m];

2
o v: kinematic viscosity [—]
s

2.5.2 Critical Reynolds number

The transition from laminar to turbolent flow and it’s determined by the critical Reynolds number:

Re > 2300 = turbulent flow
Re = 2300 = critical point
Re < 2300 = laminar flow




2.5.3 Flow pressure in curvatures
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Force balance of the system:
dFn=—-dA((p+dp)—p)=dm-a,
where:

e R: radius of the curvature

e dn=g-dA-dn

Pressure in the curvature formulation: )
dp v

dn 9 R
2.6 Compressible and incompressible flow
2.6.1 Compressible flow

In compressible flows, the density of the fluid changes so much that the density change cannot be neglected.

2.6.2 Incompressible flow

Fluid flows can be considered incompressible at sufficiently low velocities. For ideal gases, the speed of sound
can be calculated from the state variables and the fluid properties to:

c=vVk-R;-T

If the Mach number is below 0.3, the gas flow can be considered incompressible.

where:

o v: fluid velocity [T};
s

e c: speed of sound [m},
S



e k: ssentropic exponent [—|;

e R;: individual gas constant {kﬁgJK}

o T: temperature [K].



3 Mass conservation



4 Energy conservation

dE ' oo (e 1 U o o (v ~
— = P+ Q +Z[m -<h 5 tge )]Z[m '<h 5 tge )}
S——— in out
Energy flow
across system boundary Energy Energ}'f transfer
transfer mass escaping mass
where:

e FE: total energy of the system; e h: enthalpy of the entering/leaving mass
e P: power; flow;
e : heat flow; o v: velocity of the entering/leaving mass flow;
o 7: mass flow entering/leaving the system; o z: height of the entering/leaving mass flow.

4.1 Bernoulli equations

4.1.1 Energy conservation

o R ) ) R )

mn out

4.1.2
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4.2 1st law of thermodynamics: General energy conservation equation

In the case of stationary flow: ... ... ...

4.3 Examples of Bernoulli equation

4.3.1 Horizontal streamtube

2
v
Since the pipe is horizontal, z; = 25, and since point @ is a stagnation point, we have 52 = 0, then the specific

form of Bernoulli can be simplified to:

no

U1
P+g-— =p2

4.3.2 Flow out of a tank

S/

Setting the reference point at the top of the tank, we have z; = 0 and z; = z, which brings the velocity at the
2

v
top of the tank to be zero, so ?1 = 0. Since p1 = P2 = Patm, the specific form of Bernoulli can be simplified to:

2
g‘z:%:>v2:\/292

The difference between the pressure ps at the exit of the tank and the atmospheric pressure py:,, changes
because of the contraction number a:

A3
T4

4.4 Hydrostatic equation

The hydrostatic equation is a special case of the Bernoulli equation, where the velocity is zero:

p2 =p1+ pgz1

11



5 Energy grade line diagram

12



6 Pipe flows

6.1 Horizontal pipe flow

For the velocity profile of a horizontal pipe flow, the mean velocity and the height of the pipe are constant,
hence losses are only due to friction:

_Ap  pa—p1 07
€y = — = 0 *C?

6.2 Laminar pipe flow
6.2.1 Velocity profile

For the velocity profile of a laminar pipe flow, the mean velocity v,, is exactly half of the maximum velocity
Umaz at the center of the pipe axis (r =0): where:

o B e

e R: radius of the pipe;

e 7r: distance from the center of the pipe;
e 7): dynamic viscosity;

e [: length of the pipe.

The pressure loss of a laminar pipe is described by the Hagen-Poiseuille equation, which is a function that can
be calculated setting the center of the pipe as the reference point:

P1— P2 2
max — (R =0
Umax = )

Umax b1 — D2 2
m = :7~R
v 2 81 -1
m:p1*p2.d2

32n -1

l
Ap:32vm~n~ﬁ

6.2.2 Pressure loss

Flow losses in pipeline systems consist of pressure losses in straight pipes, curved pipes, and in fittings:

2
U,

Ul ~

The resistance coefficient A also incorporates the characteristics of the flow. If the flow is laminar, surface
roughness effects plays no role, as the strong influence of viscous forces in the fluid smooths out these effects:

l v, l
A.gp.7_32vmnﬁ
64-n 64v

)\: =
U d-p  Upy-d

64

A= —

Re
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6.3 Influence of surface roughness on pipe flows

6.3.1 0>k

picture 1

6.3.2 J<<k

6.3.3 d~k

picture 3

0 <k

/S S/

v/
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6.4 Moody diagram

Moody diagram is a graph that shows the relationship between the Reynolds number and the friction factor A
for different types of flow (laminar, transitional, and turbulent).
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o Transitional part: Ap, ~ v* (z is between 1 and 2) and ¢ ~ k;

o Turbulent part: Ap, ~v? and § >> k.

6.5 Curved pipe flow

6.5.1 Pressure—curvature equation

where:
e dp: pressure difference;
e dn: distance along the pipe;
e p: density of the fluid;
e v: velocity of the fluid;

e R: radius of curvature.
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7 Linear momentum theorem

7.1 Newton’s laws
7.1.1 First axiom

Newton’s first axiom (or law of inertia) states that a body at rest will remain at rest and a body in motion will
remain in motion with the same speed and in the same direction unless acted upon by an unbalanced force.

dv

— = (0 «— U = constant
dt

Zﬁzzﬁrcs:()(_)a:

7.1.2 Second axiom

Newton’s second axiom (or law of acceleration) states that the acceleration of an object is directly proportional
to the net force acting on it and inversely proportional to its mass.

_ N dv
Fes=m-d=m - —

7.1.3 Third axiom

Newton’s third axiom (or law of action and reaction) states that for every action, there is an equal and opposite
reaction. This means that for every force exerted by one body on another, there is an equal and opposite force
exerted by the second body on the first.

FA*}B = _FBHA

7.1.4 Linear momentum

A moving mass has a linear momentum I:

I'=m-7|Ns|

Since the flow is stationary, the equation is not time-dependent.

7.1.5 Momentum flux

The change in motion is a change in linear momentum over time and, according to Newton’s second law, is
proportional to a resultant force:

Hence:

~y
I
3.
QL
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7.1.6 System of forces

The temporal change of the momentum of a system of forces is equal to the sum of the forces acting from
outside on the system boundary:

jout - jin = Z Foxt

expanded to:

Iout — Iin = Fres = 1y - Uo — 1y - Uy = 1 (Vo — 1)

7.1.7 Momentum in cartesian coordinates

@ jout,r - jin,z = ZFext,z
@ jout,y - jin,y = ZFEXt,y
@ o~ e = Y Fo:

7.2 Application of the linear momentum equation
7.2.1 Momentum on x-direction: wall shear stress

We look at the body force on the pipe wall. The shear stress 7, is the force per unit area acting on the wall of
the pipe:

_dv

= dn

Ui

where:
e Ty: shear stress;
e dv: velocity difference;
e dn: distance from the wall;

e 7: dynamic viscosity.

y
X
E FR,W
‘ |FK,m| = |(pin 7pout) . A| = |Tw “A- l‘ ‘
where:

e Fg ,: force acting on the wall; « A: area of the pipe = TrTRZ;

e pin: pressure at the inlet of the pipe; o 7, shear stress;

e Dout: pressure at the outlet of the pipe; o [: length of the pipe;

17



7.2.2 Momentum on y-direction

Af:0:7m~g+FreS

Fres:m'g

example ...

7.3 Pelton turbine
TODO

7.3.1 Momentum on x-direction

Iout,x - Iin@ = E Fext,w =—m-v—m-v= _Fext,x

Foxte = 2 -m -0

8 Angular moment equation

Let’s suppose that a mass m is rotating around a point O with an angular velocity w. The angular momentum
D of the mass m is given by:

2

‘D:m-v-r:mw )

where:
e D: angular momentum [Nm-s];
o r: distance from the point O [m];
o w: angular velocity [rad/s];
o m-v: momentum [kg-m/s];

e m - 7% mass moment of inertia [kg-m?].

Table 1: Comparison between translation and rotation parameters.

Translation Rotation
Location: Z [m] Angle: & [rad]
dz dg
Velocity: v = ditc [m/s] Angular velocity: & = d—f [rad/s]
Mass: m [kg] Mass moment of inertia: J = m - r? [kg-m?]
Momentum: I = m - 7 [Ns] Angular momentum: D = J-w =m-r?-w [Nsm]
2 2 dD
Momentum flux: I =1 -0 [N] Ang. momentum flux: D = e [Nm]
Momentum eq.: Z Lt — Z L, = Z Foo Ang. momentum eq.: Z Dout — Z Djn = Z M, [Nm]

18



8.1 Application to horizontal lawn sprinkler

ﬁout - an = ZMout

—2m-w-r—0=—-Mp,

Mg, := Mech. friction moment of the shaft bearing.
Mp,=2m-w-r

8.1.1 Formulation in absolute coordinates

€

Y
A

v u

= Mpy, abs = 212 - v - 7 Analysing the system in absolute coordinates, we have: 777777

8.2 Application to flow expansion

an alyse ¥ tudolein ez(gamwm af /'/M Qoo Seclion !

(7 v
V{Joo.'ly disk<¢bubion, on @ ound\ @ ‘.
o) | iegmas =B )

—

oS — — —

=
7

i

Analysing in the c case:
v1 Ay
2

1. mass conservation: mi = 1y = v1 A1 = v9Ay = vy =

2. energy conservation @—)@:
’U2 ’IJ2
Bt+F+9a=B+F te
2

2
pl—pzzp(%Jrev); ev=C 3

v? A 2
pL—p2=p3 ((A—;) —1+C)

3. momentum equation in x-direction:
Iout_Iin:EFext,x _>FP+FFr(:O)+Fg(:O)+FBF(:O) =Fp

— 2 A (A
pr—p2=p-vi a1
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Analysing momentum equation
for Ao > A1 = pa>p1 ; 0<(<1
for Ay =A1 = p2=p1 ; (=0
for Ao 2 oc0o=p2=p; ; (=1

for Ay = 2A; = p> — p1 becomes maximal.

Hence, since we isolated p; — p2 in both energy conservation and momentum equation:

2 2

. A _ .

. Wlthf—()ﬁ.
2:-05(05-1)=025—-1+¢=(=0. H

o With j}\—j = (.25:
2-0.25(0.25 — 1) = 0.125 — 1 + ¢ = ¢ = 0.5625 [-]

o With ﬁ‘Tf = 0.75:
2-0.75(0.75 — 1) = 0.375 — 1 + ¢ = ¢ = 0.0625 [-]

Graphical representation
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8.2.1 Energy diagram

c[%h
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8.3 Second application of the angular momentum equation

8.3.1 Mixing losses

1—_.'_'_;;," vT’; Tl _:)/‘
A2 TP N JILY
i v ~Z 4 A=A (S 1<
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