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Part 1

Physical metallurgy

1 Material classes, structural models, basic concepts

1.1 Material classes and typical properties

Class

4 Typical Properties

Metals / Alloys

Conductivity (electric, thermal)
Ductility / malleability
Castable

Ceramics

High temperature resistance

)

)

)

) Shiny (reflective)
)

High E, Low «)
High compression strength
Insulator (electric, thermal)

Wear resistance

Polymers

Insulating (electric, thermal)
Longevity (corrosion resistance)
Moldable

1
2
3
4
1
(
2
3
4
1
2
3
4

)
)
)
) Cheap
)
)
)

1.2 Structural model of metals

In general, metals have:

e Metallic bonding

¢ Good electrical and thermal conductivity

o Simple, densely packed crystal structures (atomic distances ~ 0.1 — 0.2 nm)

/1O S

fcc:

face-centered cubic

Al, Ni, Pb, Au, Ag, Cu, Pt, y-Fe

FCC (Face-centered cubic)

o Packing efficiency:
T

=T~
0= g N

o Has many slip systems (12)
o Closest packed direction

bcc:
body-centered cubic

hcp:
hexagonal close-packed

W, Mo, Cr, V, Ta, a-Fe, B-Ti

a-Ti, Mg, Zn, Cd

BCC (Body-centered cubic) HCP (Hexagonal close-packed)

Packing efficiency: o Packing efficiency:

s
¢:g~68% ¢:\/—1_8z74%

o Has many slip systems (6) » Very few slip syspems. (3)
» Not closest packed direction » Closest packed direction
e Cottrell atmosphere



Packing efficiency (¢) — Volume occupied by atoms in unit cell

Total volume of unit cell

1.3 Structural model of ceramics

In general, ceramics have:
o Tonic bonding, complex crystal structures (ceramics), amorphous (glasses)
e Undoped: insulators (doped: semiconductors, superconductors or ionic conductors)
e Brittle, but high chemical and thermal resistance

o Wear-resistant, other special properties (e.g. ferro-/piezoelectricity)

3.8227 A

@ o=
. Cu2+’ Cus+
11.6802 A
@ Bax
. Y3+
/ 3.8872 A

YBCO superconducting ceramic with layered perovskite-like structure

1.4 Structural model of polymers
In general, polymers have:
e Macromolecules (103 to 10° C atoms)
o Weaker intermolecular bonds (strong atomic bond in molecular chain)
o Electrically and thermally insulating (without special modifications)
o Cheap, moldable, massive waste problem (e.g. ocean pollution)

o Matrix for many composite materials (recycling problem)

é Carbon C

@ WaterH

Polymeric hydrocarbon chain

1.5 Amorphous and crystalline materials

Amorphous materials Crystalline materials
o No crystal lattice (e.g. quartz glass, polymers) o Crystal lattice (e.g. metals, ceramics, quartz)
o Atomic distances defined by chemical bonds e Atomic distances and bonding angles are defined
e Bond angles are variable



Amorphous (quartz glass) Crystalline (quartz)

1.5.1 Polycrystalline materials

Most metal components are polycrystalline (made of many grains/crystals), i.e. they consist of countless
microscopic crystals (crystallites, “grains”).

1.5.2 Monocrystalline materials
Only for special applications, expensive
« Single-crystal turbine blades (T° > 1000°C, creep-resistant)

o Semiconductors, MEMS components made of silicon (e.g. gyroscopes in smartphones, accelerometers)

o Optical elements (e.g. laser crystals, A\/4 plates, crystals for frequency doubling of lasers)

1.5.3 Amorphous materials
 Inorganic glasses (also Gorilla glass of smartphones)
o Metallic glasses (ferrous transformer sheet metal)

o Amorphous plastics (e.g. PMMA - plexiglass, COC, ...)

1.5.4 Structure difference

Monocrystalline Polycrystalline Amorphous

1.6 Directionals dependence of the properties of materials
1.6.1 Anisotropy and Isotropy
« Anisotropic: Properties depend on direction (e.g. single crystals, wood, composites)

o Isotropic: Properties do not depend on direction (e.g. polycrystalline metals, amorphous materials)

1.6.2 Anisotropy of the Young’s Modulus E in most cubic crystals

In most cases, the F is the largest in the direction of the closest packed atomic planes, in direction of the space
diagonal (111).



1.6.3 Miller indices for crystal directions

In short, the Miller indices are the reciprocals of the fractional intercepts that the plane makes with the
crystallographic axes:

(001) (100) (010)

(101) (110) (011)

b 111) 111) (i11)

1.7 Directional dependence of properties in polycrystalline materials
1.7.1 Polycrystalline materials without texture

The polycrystalline materials without texture are considered quasi-isotropic, because the grains are randomly

oriented.

Polycrystalline material without texture

Notice: each crystal is anisotropic. but the material is quasi-isotropic to the outside, directional dependence

“averages out”

1.7.2 Polycrystalline materials with texture

The polycrystalline materials with texture are considered anisotropic, because the grains are preferentially

oriented.

Polycrystalline material with texture

10



1.8 Material properties wrap-up
1.8.1 Single crystal materials

e Anisotropic

e Properties depend on direction

e Not uniform = anisotropic

1.8.2 Polycrystalline materials without texture
¢ Quasi-isotropic
e Each crystal: anisotropic

e Uniform properties in all directions: isotropic — quasi-isotropic

1.8.3 Polycrystalline materials with texture
e Anisotropic
o Preferential orientation of the crystallites: texture — anisotropic

o Examples: rolled and recrystallized electrical sheets with Goss texture

1.8.4 Amorphous materials

o Isotropic (e.g. glass or amorphous metals)

1.9 Polymorphism (Allotropy)
Some materials may exhibit more than one crystal structure:

a-Fe (ferrite, BCC) below 911°C
Iron ¢ ~4-Fe (austenite, FCC) 911°C to 1392°C
0-Fe (ferrite, BCC) 1392°C to 1536°C

HCP below 830°C
BCC above 830°C

o Titanium

o Shape memory alloys (e.g. NiTi)
o Carbon (graphite, diamond, graphene, fullerene, CNT, ...)
e Zirconia (high crack resistance due to phase transformation toughening)

o Ferro- and piezoelectric materials (e.g. PZT, quartz, ...)

1.9.1 Polymorphism of Iron (Fe)

T
1392°C
o1 Jie S

Slow Austenite transformation in steel: Ferrite Fast Austenite transformation: Martensite

11



1.9.2 Polymorphism of Carbon (C)

/ \

[Amorphous Carbon [ Crystalline Carbon}
[ Activated Carbon} [ Templated Carbon J ( Graphite} [ Fullerene J ( CNT J ( Carbyne} [ Diamond J

O BN YN
( Paracrystalline J (Rhombic} [ Hexagonal J ( Cubic J ( Hexagonal}

1.9.3 Polymorphism of Nitinol (NiTi)

NiTi is a shape memory alloy (SMA), used for screen lock of tablet notebooks, medtech, and spectacle frames.

Austenite
0{(,)\\@ %,
2
o %
-
deformation
Martensite Martensite

1.10 Microstructure and Phases
Phases are homogeneous subsections of a material with uniform physical and chemical properties:

e A phase can be crystalline or amorphous

e At the phase boundaries, a sudden change in structure, properties and chemical composition occurs
Polycristalline materials can consist of:

o One phase (homogeneous microstructure, e.g. only iron crystals)

« Different phases (heterogeneous microstructure, e.g. graphite and iron)

1.10.1 Homogeneous microstructure 1.10.2 Heterogeneous microstructure
They have only one phase and crystal structure: They have multiple phases and many types of crystal
structures:

12



1.11  Alloys
1.11.1 Definition of an alloy
An alloy is a metallic material of at least 2 types of atoms:
o Metal + Metal (iron-nickel, gold-silver, tin-lead, aluminum-copper, ...)

o Metal + Non-metal (iron-carbon (steel), nickel-phosphorus, ... )

1.11.2 Microstructure of alloys
« Homogeneous, single-phase, only one type of cristal: SOLID SOLUTION CRYSTAL
« Heterogeneous, multi-phase, MIX OF DIFFERENT CRYSTAL TYPES:
— Crystals of pure metals without impurity atoms (no solid solution crystals)
— Solid solution crystals with impurity atoms,

— Crystals of intermetallic or intermediate phases (chem compounds crystals with their own distinguished
crystal structure e.g. NigTi, FesC, ...)

— (Impurity particles, e.g. added ceramic particles or slag residues)

2 Most important metal structures and crystal lattice defects

2.1 Lattice defects
Lattice defects are irregularities in the crystal structure:
e 0-dimensional defects (point defects)
o 1-dimensional defects (line defects)
o 2-dimensional defects (surface defects)
(

o 3-dimensional defects (volume defects)

2.1.1 0-dimensional defect
0-dimensional defects include vacancies (missing atoms) and impurity atoms (foreign atoms in the lattice).

The approximate atomic size is 0.1nm.

‘ @ Lattice atom

| (OO Vacancy

@ Interstitial atom

Substitutional impurity atom

| | ® | @ Interstitial impurity atom

108088888

Point defects: vacancy, interstitial atom, substitutional atom
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2.1.2 1-dimensional defect

1-dimensional defects are dislocations (line defects) in the crystal structure.

Edge dislocations insert an extra half-plane of atoms in the crystal, distorting the nearby planes of atoms.
— slip direction of atoms

(Burgers vector b) ¢ : —p Shear
* L

y

shear
stress

shear /
<+ stress <
\
/ N\
\ dislocation
Linserted half plane* direction of movement " line

Line defects: edge dislocation, screw dislocation

2.1.3 2-dimensional defect

2-dimensional defects are grain boundaries (surface defects) in polycrystalline materials:
e Crystal growth starts at multiple locations within the molten metal.
o Finally, the growing grains merge to form the microstructure of the solid metal.

The approximate atomic size is 10 to 100 pm.

a
®
ﬁs

Q

Crystallization from a melt:
(1) homogeneous melt, (2) nucleation of crystals, (3) crystal growth surrounded by residual melt, (4) fully
solidified polycrystalline structure with grain boundaries

2.1.4 3-dimensional defect
3-dimensional defects are precipitates, inclusions, voids, cracks (volume defects) in the crystal structure.

The size is very small (nanometers)

Coherent NizgAl precipitates (white) in a Ni solid solution crystal (black)
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3 Elastic and plastic deformation Energy

3.1 Elastic deformation Spring example

3.1.1 Atomic energy-distance model .
High thermal

The atomic energy-distance model describes the interaction expansion
between two atoms.
The coefficient of thermal expansion « is inversely

proportional to: g t +AE
e Young’s modulus E (in case of springs, the force) 0 N .
* Bonding energy Low thermal
e Melting temperature .
Eo T +AE expansion

Center of oscillation

O/m [ Substance with high ]
binding energy
3.2 Elastic constants of isotropic materials
. . Substance with low
3.2.1 Elastic stress, strain, and Young’s modulus binding energy

Letting the load be unidirectional and in x-direction, then:

1
ex:E-ax <~— o,=F- ¢,

3.2.2 Poisson’s ratio v

When a material is stretched in one direction (x-direction), it tends to contract in the other two directions (y-
and z-directions).

The ratio of the transverse strain to the axial strain is called Poisson’s ratio:

&y _ &2

€z Ex

3.2.3 Relationship between the 3 isotropic elastic constants G

For isotropic materials, the following relationships hold:

FE _ Oy
2(1+v)  2e,(1+v)

G:

3.3 Plastic deformation in metals

The plastic deformation has as characteristics to be permanent and non-reversible.

3.3.1 At room temperature
o Dislocations move on densely packed slip planes in densely packed directions
o Smaller slip distances require less external force or energy

Note: There are exceptions. For example, metals with relatively low stacking fault energy show:
o Twin formation (e.g. nitinol)

« Partial dislocations pairs with stacking faults in between (e.g. Ni, Cu)

3.3.2 At high temperatures

The metal creeps, leading to diffusion of atoms, especially at grain boundaries.

15



3.4 Dislocation Slip Model

The dislocation slip model describes the plastic deformation of metals by dislocation motion.

3.4.1 Simplified model
The simplified dislocation slip model is sufficient for practical understanding of plastic deformation:
o Inserted half-plane, the end of which forms the dislocation line

¢ Dislocation moves on densely packed slip planes

direction of movement slip direction of atoms
of dislocation line shear stress (Burgers vector b)
— —> —
......... L. slip
e —d—--d - plane
P

shear stress

Edge dislocation motion under shear stress

3.5 Slip systems
3.5.1 Slip systems in FCC metals (Miller indices)
FCC metals have 12 close-packed slip systems, making them soft and highly ductile (e.g. Au, Ag, Cu, Al, o-Fe)

a

X X X
% [011] (111) % [011] (111) % [011] (117) % [011] (111)
% [101] (111) % [101] (111) % [101] (117) % [101] (111)
% [110] (111) % [110] (111) Y% [110] (117) % [110] (111)

3.5.2 Slip systems in HCP metals (Miller indices)

HCP metals are closely packed but deform on only one slip plane with 3 slip systems, resulting in limited
ductility (e.g. Ti, Zn, Mg).

(001)
[100] (001)
[010] (001)

[110] (001)
[010]

[100]

[110]
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3.5.3 Slip systems in BCC metals (Miller indices)

BCC metals have 48 slip systems but are less closely packed, leading to higher strength and lower ductility (e.g.
a-Fe, Cr, W, Mo, Ta, Nb)

z

(011)

A
N

1)

e N

% [117] (011) x % [111] (011) Y2 [111] (110)
12 [111] (011) 1% [111] (011) Y2 [111] (110)

z z z

(i10)

/B

(112) T (123)

y y y — Yy
"
X _ X - , X X
Y2 [111] (110) Y2 [111] (101) Y2 [111] (101)
% [117] (110) % [171] (f01) % [117] (101) %1171 (112) % [117] (123)
12 major slip systems: 6 {110} slip planes 36 minor slip systems:
2 slip directions: 1/2(111) each 12x 1/2(111) {112}

24x 1/2(111) {123}

F
3.6 Schmid’s law of critical resolved shear stress i

The Schmid’s law states that slip begins in a crystalline material when the resolved
shear stress on a slip system reaches a critical value.

o PLastic deformation occurs only on closely packed slip planes where the applied
shear stress exceeds a critical value

e Under uniaxial loading, the maximum shear stress acts on slip planes inclined at
45° to the load axis

3.7 Correlation between metals crystal structure and ductility

Metal | Ductility Packing structure Slip systems Slip system

orientation

FCC | Highest ductility | Closest-packed (74%) 4 slip planes — 12 | Very high probability
among metals slip systems of favorable

orientation (Schmid’s
law)

BCC | Lower ductility | Less closely packed (68%) | Many slip planes and | Strength often higher
than FCC, but still slip systems than FCC metals
generally good

HCP | Limited ductility | Closest-packed (74%) Only 1 slip plane —+ 3 | Low probability of
under normal slip systems favorable orientation
conditions (—45° to load axis)
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3.8 Particulatiries in BCC metals
3.8.1 Cottrell atmospheres and Dislocation pinning

o In a—iron with a BCC structure (ferrite), the octahedral sites for interstitial atoms such as carbon or
nitrogen are much smaller than in y—iron with an FCC structure (austenite)

e As a result, carbon atoms in ferrite preferentially diffuse into the distortion fields near dislocation lines,
where more space is available, forming so-called Cottrell atmospheres

e These atmospheres are responsible for the pronounced upper yield point (Rey) observed in tensile tests
of many BCC metals, as well as for the brittle fracture behavior at low temperature in impact tests

¢ During plastic deformation, dislocations must first break free from the Cottrell atmosphere. This process
is especially difficult at low temperatures or high strain rates, leading to strong dislocation pinning

@ Lattice atom (Fe)

@ Dislocation
@ |Interstitial atom (C)

Carbon atoms occupy small octahedral sites (left), preferentially diffuse to dislocation regions (center), which
forms Cottrell atmospheres that pin dislocations (right)

4 Strengthening mechanisms

4.0.1 Metals mechanisms

Lattice defects act as deliberate obstacles that impede the motion of dislocations.

Dim | Lattice Defect Strengthening Mechanism Increase in 0.2%
Yield Strength
0-D | Substitution / Interstitial atoms with | Solid solution hardening ARpg.2 ~ cl/2
concentration of ¢ in the solid solution
crystal
1-D | Dislocations (dislocation density V) Strain (cold-work) hardening ARpg.2 ~ N1/2
2-D | Grain boundaries defining an average | Grain = boundary  hardening | ARy ~ a2
grain size of d strength and ductility still good
3-D | Coherent precepitates with a size of | Precipitation hardening ARpo.2 ~ D'/2

D (also: semi-coherent and incoherent
precipitates and dispersion particles)

4.0.2 0-dimensional: Solid-solution hardening
o Impurity atoms in a solid solution create lattice distortion fields that impede dislocation motion

 Interstitial atmos cause stronger lattice distortions than substitutional atoms, leading to a greater strengthening
effect

e A larger atomic radius mismatch and higher impurity concentration both increase the strengthening effect

¢ Result: increased strength but reduced ductility

18



Edge dislocation in a crystal lattice with a substitutional impurity atom

SSH application fields:
e Al-Mn and Al-Mg alloys (5000 and 3000) for:
— Automotive sheet metal
— Airplane outer skin
— Beverage cans
— Sandwich honeycomb structures in lightweight structures
e Structural and stainless steels

o Gold jewerly (Au with Ag, Cu, Ni, Pt, Pd, ...)

5 TODO
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Part 11

Strength and Ductility

6 Properties of material

Property Context Characteristic values
Mechanical Withstanding static or dynamic | Young’s modulus, static strength, hardness,
loads/forces/stress fatigue strength, creep strength, toughness,
ductility
Technological | Material processing Formability, welding suitability, castability,
hardenability
Physical Various functional properties Electrical ~and  thermal  conductivity,
transparency, magnetizability, refraction
index, ...
Chemical Resistance to normal or harsh | Resistance against corrsion, UV light or
environments oxidizing agents, food safety, biocompatibility,
toxicity

6.1 Failure hypotesis and Material testing methods (examples)

Failure hypothesis

Material testing methods

Failure of metals due the plastic deformation
(dislocation slip) under static stress

Tensile test, compression test, bending test, torsion test

Failure due the crack formation and crack
growth under dynamic oscillating stress

Fatigue tests (HCG, LCF)

Failure due the crack growth under sudden
impact (crack growth under constant load)

Impact notch toughness test (Fractures mechanics)

Failure due the plastic deformation at high
temperatures (diffusion, especially along the
grain boundaries) under static stress

Creep test (or relaxation test)

7 Tensile test

7.1 Engineering Stress and Stress conditions

7.1.1 Engineering stress o

Engineering stress is the force F' acting on the original cross-sectional area Sp:

g

~ S

F

7.1.2 Normal stress

The normal stress, similar to o, is the force Fiy that acts perpendicularly to Sp:

g

_In
-5
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7.1.3 Shear stress

Shear stress is the force Fig parallel to the original surface Sp:

_ Fq
o

T

7.1.4 Engineering strain ¢

Engineering strain is the ratio of the change in length to the original length of a material under load:

AL L — L

T o Lo

7.1.5 Hooke’s law

Within the elastic limit of a material, the deformation (strain) is directly proportional to the applied stress:

c=F-¢

=4 (3] 4

2] fracture i [5]
e I —

- :
necking ( ) | (constriction) |
S—"” ]

| Eelastic + Eplastic

Etransverse =-V Elnngitudinal § ‘ Eelastic

BB R B

Ao, Lo

Tensile test with of a BCC metal without the upper yield point Rey

7.2 Elastic characteristics of some metals

Metal | Poisson’s ratio v | Young’s modulus E [N/mm?] | Shear modulus G [N/mm?]
Mg 0.28 44’300 17200
Al 0.34 70’600 26’500
Ti 0.36 111’800 40’200
a—Fe 0.25 206’000 82’400
Steel 0.28 206’000 807440
Cu 0.35 122’530 45’130
Brass 0.41 103’000 36490
Zn 0.25 130°010 41’200
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7.3 Typical stress-strain behavior of metals
If the applied force is too big:
e Starting of Dislocation slip

o Plastic deformation

7.3.1 Yield Strength
o Upper Yield point Rep: ferritic structural steels (BCC)

o 0.2% Yield Stress Rpg.2: most other metals and alloy

7.3.2 Graphical representation

o [MPa] o [MPa]
4 Material without 4 Material with
yield point maximum yield point maximum
R | R.
Rp0'2 i ReH
ReL """
Ao
E=—
Ae
:::8 =€p+Ee ;": Ee ,:':Se E=Ep+Ee €e ‘:': €e
i e, o [04] =l e, o [%]
szo 2 % Ep:Ag Ep:A Ep:Ag Sp:A
Without the maximum yield point: With the maximum yield point:
® Omax — Rp0,2 (02% y1€1d stress) ¢ Omax = Rm

o Upper yield point Rey

7.4 Young’s modulus and Characteristic Strength Values
7.4.1 Young’s modulus F

The Young’s modulus E is measured as the slope in the linear-elastic range:

E= % in [N/mm? ; (MPa)] or [kN/mm? ; (GPa)]

7.4.2 Yield stress R
Yield stress R is the stress, expressed in MPa, at which plastic deformation begins:
o 0.2% Yield stress Rpo.2 corresponds to the stress at a plastic strain of e, = 0.2%

e Upper yield point Rey corresponds to the maximum stress observed at the onset of yielding, mainly in
ferritic structural steels

7.4.3 Tensile strength R,

It corresponds to the stress at the maximum of the stress-strain curve
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7.4.4 Graphical representation

€,=02%

Note: representation not scaled; the elastic region is drawn much too flat

7.5 Characteristic Ductility values
7.5.1 Fracture Strain A

Plastic strain at fracture is defined with respect to the initial specimen length Ly (e.g.: Ly = 50mm is reported
as A50mm)

b X |

|
- - L > ~_
1

Li—L
Plastic strain at fracture: A = % = €p, fracture
0
7.5.2 Uniform Strain A,
A, corresponds to the plastic strain at maximum load before necking begins. It is very important for metal
forming.
7.5.3 Contraction at fracture Z

It is the reduction of the cross-sectional area after fracture:

~AS (81— 5))

7= _
So So
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1200

7.6 True Stress and True Strain
10004/ -\
7.6.1 True stress ox ( | ET6100
True stress is the force related to the true cross-section (which 1
is constantly contracting): 800
@ | X5CrNi18-10
c"=c(1+¢) == —
= 600 -
£
(%]
(%]
7.6.2 Ture strain ex o
; 400 - $235JR
True strain is the change in length relative to the true length —
(which is constantly extending): ( “AIMgSi1-T6
200
e =In(l+e) ’
0 ' ' ' [ ' |

. 0 10 2I0 30 40 50
7.7 Polymers Tensile test Strain in %

o Characteristic values depend on test speed and temperature (0.125-500 mm/min).

e Creep occurs already at room temperature: creep tests and isochronus stress-strain diagrams are really
relevant

e At high temperature and low strain rate: strength values and Young’s modulus decrease, while characteristic
strain values increase

o Characteristic values differ from materials:
— Secant modulus E (determinated between € = 0.05% and 0.25%)
— Yield stress o, and yield strain ¢,

— Fracture stress o, and fracture strain e

7.8 Summary of tensile test
e Stress-strain behavior is determined on a specimen (rod, round, flat). Standard: DIN EN EN ISO 6892
e Force and elongation are measured and converted into stress o and strain
o The resistance of a material to plastic deformation or fracture is referred to as its strength

From the stress-strain curve, the following characteristic values can be identified:

7.8.1 Characteristic stress values

o 0.2% Yield Strength Rpg.o (for ferritic structural steels: Upper Yield Point Ren): defines the onset of
plastic deformation. This is the most important value for construction and design

o Tensile strength Ry,: characterizes the resistance to fracture

7.8.2 Characteristic strain values
o Fracture strain A
o Uniform strain A,
o Contraction at fracture Z

o r— and n—values (relevant in metal forming)

7.8.3 Elastic range
e Young’s modulus F (Hooke’s law, elastic slope)

o Poisson’s ratio v
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8 Other quasi-static mechanical tests

8.1 Bending test
8.1.1 Flexural strength (bend strength) o,
The bend strength is the peripheral edge stress o}, in the fracture point:

3FL 3F(L— L)

g = =
* 7 2bh2 2bh2
The Young’s modulus E is then calculated as:
_ 3. F
C4bh3 - f
3000
7 /4 Hard PM cold-work tool steel (Elmax)
F F/2 F/2 i
o
_'EE 2'000 Ductile stainless steel PH 17-4
y
2 1500
L Z
‘E 1'000
h 3
500
o

0o 1 2 3 4 5 6 7 8 9 10 11 12
Strain in %

8.2 Torsion test

o Less significant than tensile or bending tests
o Peripheral edge shear stress 7 at fracture = torsion strength 7z p
o A plastic shear strain at the peripheral edge of 0.4% corresponds to a plastic strain of 0.2% in tensile tests

o The 0.4% torsion strength 7 9.4 > Rpo.2 from tensile tests

* | TR,0.4 ~ (.58 - Rp0.2

Edge stress Tr in MPa

4

TRB[F ———~——— —_= Bruch
TRO4[ — — ~ — = !

0.4 Edge shear strainyin %
AT 2-F-L

G = R 3
Ay @R
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8.3 Creep and Relaxation Tests (High temperatures)
e Creep occurs under constant stress; relaxation occurs under constant strain

e At room temperature, the static strength of metals is generally not time-dependent. Exceptions include:
pure aluminum, and very strong metal such as tin and lead

e At elevated temperatures, strength becomes time-dependent and also influenced by test speed. Under
constant load, strain does not remain constant but changes with load and time

e Materials with good creep resistance include ferritic and austenitic steels, cast steels, and nickel alloys.
These are used above 400°C in applications such as steam boilers, steam turbines, chemical reactors,
industrial furnaces, gas turbines, and aircraft engines

¢ Creep and relaxation tests are essential for evaluating heat-resistant materials, alongside tensile and fatigue
tests at elevated temperatures.

8.3.1 Creep test

The creep test is easier to perform than the relaxation test, since it applies a constant load and the resulting
strain is easily measurable.

AL(t)

ANNNNNRNRRNRNRNR RN RN RRRNANNRNNNNNNNY

8.4 Isochronus o — ¢—Diagram for Polymers

e In creep tests, strain increases under constant stress (for many polymers this occurs even at room
temperature)

o Multiple creep curves can be combined into an isochronus o — e—diagram

o For different temperatures, a separate diagram is created for each temperature

+Stress o |TemperatureT = constant‘
Load duration t
to
13
Ot ---mooe SRRRRELEERELLEEEL Y LSERLbh
E(6,0,,T) %
01, Iy, =0
T E(Glar29 T)
e(o1,t2, T) Strain €
01
E.(o,t0,T) = ———
(U 2 ) 8(0’1,t2,T)
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Part I1I
Steel - Technology and applications

Steel is a Carbon-iron alloy and is the most important construction material:
o All Fe-C alloys with < 2.1% carbon (+ further alloying elements)
e Very good properties, adjustable over a large range:
— Strength, ductility, toughness, formability, machining, weldability
— Many possibilities of heat treatments (polymorphism of iron)
 Innovation boost: about 75% of all steels used today have been developed in the last 20 years
e China dominates steel market (>50% of world production)

o Cost-effective (large variety of global suppliers, availability of raw materials)

9 Steel technology

9.1 Blast furnace and Pig iron
e Process: reduction of iron oxide with coke FeoO3 + 3C — 2Fe 4+ 3CO
o Product: pig iron (3-5% C, also contains Mn, Si, S, P)
e Furnace dimensions: ~30m tall, @10-14 m
o Typical input/output per day:
— 16’000 t ore, 4’500 t coke, 14’000 t air
— — 10’000 t pig iron, 3’000 t slag, 22°000 t exhaust gas

Red ironstone, brown ironstone, and magnetite

Pig iron

e,
Ore pellets, coke (devolatilized and degassed coal), limestone

9.2 Conversion to Crude Steel
9.2.1 Oxygen-Blown Converter (OBC)
 Pig iron (>6% C) reformed to crude steel (<2% C)
o Pure oxygen burns off the excess carbon and other impurities
e Main process:
— Oxygen-blown converter (OBC, LD process)
— Electric furnace (EF, arc furnace, often using scrap or direct reduced iron (DRI) as input)
— (Historically: open-hearth furnace (OHF), now obsolete)

o Continuous casting dominates (>30% worldwide production)
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Sublance
) (temperature Blowing ‘ h
Blowing lance measurement,

Pig iron i sampling)
Limestone \

lance

g Scrap

)

Argon Nitrogen Tapping of steel

Charge (furnace feed) Blowing process Sublance measurement Removal of slag

Oxygen-blown converter (OBC) process

9.2.2 Electric Furnace (EF)

In Europe, about 39% of crude steel is produced in electric furnaces (EF), while in the World, it is about 25.8%.

9.3 Secondary metallurgy (Ladle metallurgy)
9.3.1 Purifying and alloying of the crude steel
Procedure:

o Deoxidation: decreasing soluble oxygen content during solidification, in order to avoid gas inclusions
and splashes

¢« Removal of impurities: Gases and solids are rinsed out with Argon

o Alloying: Alloying wires, similar to tubes, are added to the ladle (usually via conveyor belt)

o Temperature adjustment: Casting temperature is adjusted by adding scrap or iron granules

o The ladle discharge is mostly continuous casting (strand casting, 88% of the annual world production)
Special processes for archiving maximum purity:

o Electroslag remelting (ESR)

e Vacuum arc remelting (VAR)

o Powder metallurgy (PM)

Electrodes
Alloying conveyor

belt

Injection lance

Wire feeding
Temperature

measurement

Alloying wire

Ladle * Argon gas rinsing

Ladle metallurgy process
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9.3.2 Important alloying elements

Improvement of hardenability
The improvement of hardenability prevents the diffusion of Carbon during quenching.
Most important elements: Mn, Cr, Ni, Mo, V, Si

Fine grain
Al, V, Ti, Nb in small quantities as nucleation agents (nitrides) in fine-grained structural steels.
V for grain refinement in QT steels, and Co for hindering grain growth in high-speed steels (HSS).

Corrosion resistance

Cr, Cu, Ni, Si, Mn (all approx. < 0.5 —1%) to slow down the surface corrosion of steels in atmospheres and
water.

Cr (>12%) and Ni for stainless steels (e.g. AISI 304, 316).

Mo and N for pitting corrosion resistance in stainless steels.

Ti, Nb, Ta against intercrystalline corrosion in stainless steels after welding.

Wear and Heat resistance
Special carbide formers: Cr (>1%), Mo, V
Special nitride formers: Al, V, Ti, Nb, Mo, Cr

Scale resistance
Against oxidation (scale formation), stable oxide layer against surface burn-off: Cr, Al, Si

9.3.3 Resume of alloying elements functions

Function Alloying elements
Hardenability Mn, Cr, Ni, Mo, V, Si
Grain refinement Al, V, Ti, Nb

Corrosion resistance | Cr (>12%), Cu, Ni, Si, Mn, Mo, N (<0.5-1%)
Wear /heat resistance | Cr (>1%), Mo, V, Al, Ti, Nb, Mo

Scale resistance Cr, Al, Si

9.3.4 Electroslag remelting process (ESR)

Principle

o Electric remelting furnace is used for refining semi-finished steel products after continuous casting

o Steel is remelted through a layer of reactive slag under alternating current (AC)

Functions of the reactive slag

o Removes impurities (e.g. P, S, O, N, H), and non-metallic inclusions

e Acts as refining and protective medium

Solidification

e Melt droplets pass through slag and solidify in a water-cooled copper mold
o Rapid solidification procedures:
— Fine-grained structure

— Homogeneously distributed carbides
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Applications

e Production of high-purity steels for: Toolmaking, Medical technology, Watch and precision industries,
Aerospace

Alternative method

o Powder metallurgy (PM) can archieve similar levels of purity

Water-cooled copper mold

Electroslag remelting process (ESR)

9.4 Continuous casting
e Slabs: Semi-finished product for rolling sheets (coils), foils, plates
« Billets: Semi-finished product for rolling wires, rods, profiles
e Wires — screws, nails, spheres, smaller rods
e Rods — shafts, axles, larger profiles
¢ Cold drawing — good surface quality, high precision
e ETG — high strength
o Most steel (>90%) is strand-cast

9.5 Recycling and Green Steel
o Direct hydrogen reduction instead of blast furnace — Up to 95% lower CO5 emissions, but high costs
e Hydrogen supply:
— Hs produced by electrolysis of water
— Powered with renewable electricity (wind, solar)
e Iron ore reduction
— Iron ore directly reduced with green hydrogen (DRI) to forme sponge iron
— By-product: water vapor instead of CO4
e Steel production
— Sponge iron charged to an electric arc furnace (EAF) to produce crude steel

— Furnace operated with green electricity

30



9.6 Summary of Steel Technology
9.6.1 Blast furnace

e Iron ore reduced to pig iron in a blast furnace

9.6.2 Crude steel production
e Pig iron refined to crude steel by reducing carbon content
o Oxygen-Blown Converter (OBC): refining with oxygen

« Electric Furnace (EF): melts scrap steel or direct-reduced iron (sponge iron) to crude steel

9.6.3 Secondary metallurgy
e Crude steel further purified and adjusted to final composition in a ladle furnace
e Processes:
— Deoxidation (chemical or vacuum)

— Advanced purification (electroslag remelting (ESR), vacuum arc remelting (VAR), powder metallurgy
(PM))

— Alloying additions

9.6.4 Semi-finished products
e Produced mainly by continuous casting (slabs, billets)

o Formed into sheets, plates, wires, rods, pipes, and profiles by hot or cold rolling/drawing

10 Microstructure formation

10.1 Polymorphism of Iron
10.1.1 J-iron

d-iron is a phase of iron with a BCC structure. It is stable above 1392°C, and it’s not ferromagnetic. Has a
limited technical relevance.

10.1.2 ~-iron (austenite)

~-iron, also called austenite, is a phase of iron with a FCC structure. It is stable between 911 - 1392°C. It’s not
ferromagnetic, and is soluble up to 2% C, 100x more than a-iron. Its high solubility is due to larger interstitial
sites and reduced lattice distorsion from carbon atoms.

10.1.3 a-iron (ferrite)

a-iron, also called ferrite, is a phase of iron with a BCC structure. It’s stable below 911°C. It’s not ferromagnetic
between 769-911°C, but it becomes ferromagnetic below the Curie temperature, so <769°C. It has very low
carbon solubility, maximum 0.02% C.
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10.2 Metastable iron - iron carbide phase diagram

Composition (at% C)
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10.2.1 Phase diagram explaination

The Fe-Fe3C phase diagram shows the equilibrium between iron and cementite (Fe3C) in steels and cast irons
under slow cooling. It is called metastable because FesC is not the most stable carbide (graphite is), but
cementite forms under typical industrial conditions.

Symbol | Phase Description

Ferrit BCC structure, very low carbon solubility

« erHte (< 0.022 wt% C at 727°C), soft and ductile
Austenit FCC structure, higher carbon solubility

v Hstenite (< 2.14 wt% C at 1147°C), though and formable

. BCC form stable only
J Delta ferrite at high temperatures (> 1394°C)
. Hard, brittle iron carbide
FesC Cementite with 6.70 wt%
L Liquid phase | Molten iron-carbon alloy
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10.3 Microstructure formation of Steel (Slow Cooling)

o Lj: hypoeutectoid steel, 0.35% C (e.g. structural steel)

e Ls: eutectoid steel, 0.8% C (e.g. cable of car wires before heat treatment)

o Ls: hypereutectoid steel, 1.4% C (e.g. ball bearing spheres before hardening)

Summary of key reactions

Type g?lr;lepgvs:;)og Reaction Temperature miiissﬁﬁgfme
Eutectic 4.3 L — v+ FesC 1147°C ie(cisrzl;lz:i e()austenite
Hypoeutectic < 4.3 L = v+ Leutectic = ¥ + FesC < 1147°C irilgilgu?iﬁtemte
Hypereutectic > 4.3 L — Fe3C + Leytectic — FesC + < 1147°C irilleléézrgu;:ietrélentite
Eutectoid 0.8 v — a+ FesC 79700 ieizﬁfsn(tfiigite
Hypoeutectoid <0.8 Y = Qprimary + pearlite < 797°C lj_ripnel:;};tfeerrite
Hypereutectoid > 0.8 v — FesChprimary + pearlite < 727°C E)-ripHe}Z;l};t(ezementite

10.3.1 Hypoeutectoid steel L,

Hypoeutectoid steels contain less than 0.8 wt% carbon. During slow cooling, they form a mixture of ferrite
and pearlite. Ferrite appears first during solid-state transformation and is therefore called primary ferrite

(proeutectoid).

Properties

Soft, ductile steel with good weldability and formability, commonly used as structural steel.

Alloy L; above

point 1a

Grain boundary
in austenite

Microstructure at room temperature of primary ferrite and pearlite

Alloy L; between
points 1a and 1b

Primary
ferrite crystal
i ——

:
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Alloy L; below
point 1b

Ferrite
lamella
Cementite
rystal lamella in

~ v pearlite




10.3.2 Eutectoid steel L,

Eutectoid steel contains exactly 0.8 wt% carbon, corresponding to the eutectoid composition in the Fe-Fe3C
phase diagram. At the eutectoid temperature (727°C), austenite (vy) transforms completely into pearlite, a
finely layered mixture of ferrite (o) and cementite (Fe;C).

— Fe;C
T arec @t e

Final microstructure at Room Temperature

The microstructure is 100% pearlite, consisting of:
o Ferrite lamellae (alpha): soft, ductile phase forming the light layers
¢ Cementite lamellae Fe3C: hard, brittle phase forming the dark layers

The alternating lamellar structure provides a balance of strength and ductility, characteristic of unalloyed
eutectic steel.

Alloy L; above Alloy Lz between Alloy Lz below
point 2a points 2a and 2b point 2b

Grain boundary Pearlite (lamellae of Ferrite lamella Cementite

in austenite cemetite and ferrite) in pearlite _lamella
in pearlite

Microstructure at room temperature of eutectoid steel after slow cooling

Result
Eutectoid steel exhibits a uniform pearlitic structure, combining moderate hardness with good toughness. It
serves as a base for many steels that are later hardened or tempered by heat treatment.

10.3.3 Hypereutectoid steel L3

Hypereutectoid steels contain more than 0.8 wt% carbon. During slow cooling, cementite Fe3zC precipitates
first at austenite grain boundaries. The remaining austenite transforms into pearlite at the eutectoid temperature.

Y= Fe3cgrain boundary + (a + Fe3c)pearlite
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Final microstructure at Room Temperature

Final components:

o Grain boundary cementite (procutectoid cementite): hard and brittle. It forms before eutectoid

reaction and outlines prior austenite grains

Pearlite: lamellar mixture of ferrite and cementite, formed from eutectoid reaction at 727°C

Total structure: grain boundary cementite 4+ pearlite

Alloy L; above Alloy Ls between Alloy Ls below
point 3a points 3a and 3b point 3b
Austenite
Austenit Austenit Perlit|
Ferrite
lamella

Grain boundary Grain boundary Cementite

in austenite cemetite . lamella
in pearlite

Microstructure at room temperature of hypereutectoid steel after slow cooling

Result
Hard and wear-resistant, suitable for applications requiring high surface hardness and fatigue strength (e.g. ball

bearings, cutting tools).
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10.4 Faster Cooling / Quenching

Fast cooling of steel changes the transformation behavior compared to equilibrium cooling. In such cases, the
Continuous-Cooling Transformation (CCT) diagram is used.

Fe-Fe3C low-carbon steel C35E

CCT low-carbon steel C35E

Temperature [°C]

1000

800

600

400

200

Fast cooling:

-

100

Austenite

e Transformation temperatures shift to lower values

+ Pearﬁte)é

C35E

Ausitenite

Cementite +
Austenite

E(Cementfte + Pearlite)

Ferriteiz + Cementite

o Pearlite become finer and forms over a wider temperature range instead of only at 727°C

« Martensite and bainite can form

10.4.1 Difference between CCT and Iron-Iron Carbide Phase Diagram

Diagram

Description

Use case

CCT diagram

Shows phase transformations
under continuous cooling

Required for realistic
heat-treatment conditions

Fe-Fe3C diagram

Shows equilibrium (slow-cooling)
transformations

Valid only for very
slow cooling / equilibrium
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10.5 Martensite
o Very fast cooling (quenching) of austenite produces a martensitic transformation
o Diffusion does not occur, so neither ferrite nor pearlite can form

« Lattice shear of FCC austenite produces tetragonal body-centered martensite

10.6 Bainite

Rapid cooling to an intermediate temperature range (250-500°C), slower than for martensite or pearlite,
produces bainite:

e Combined shear and limited diffusion with cementite precipitation
o Higher strength than pearlite, more ductile than martensite

¢ Suitable for high-performance components and tools

10.6.1 Structure
Upper bainite

o Forms at higher bainitic temperatures (350-500°C)

o Ferrite needles with cementite lamellae mainly at ferrite boundaries
Lower bainite

o Forms at lower bainitic temperatures (250-350°C)

o Ferrite needles with fine cementite particles inside the ferrite

Upper bainite Lower bainite

Ferrite needle

Cementite Cementite
lamellae particles
; W AT g
Previous austenite Previous austenite S 20200814 ;..?{,-; 2 Ut g S N AT LT
grain boundary grain boundary Obja;ﬁ;, Z100:X1000 f'Z FA'k .;,:’ "':;f: ~ "-:-."‘13‘?'5:_ o
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10.7 Continuous-Cooling Transformation Diagram (CCT)

The CCT diagram shows phase transformation during continuous cooling.

10.7.1 Carbon steel C35E CCT

e For C35E steel (0.35 wt% C), only small amounts of bainite form

o Bainite forms only within a narrow temperature-time range

o Higher cooling rates produce martensite, slower cooling produces ferrite and pearlite
Resulting hardness for typical cooling paths

e Martensite: about 650-600 HV

e Bainite: about 290 HV

o Ferrite-pearlite: about 200-180 HV

« Temperature in °C

| Continuous-cooling transformation diagram carbon steel C35E

800 - Austenite

600

400 A

200

180 . ,
HY Timeins

»
>

0

10-1 100 101 102 108 104 105

10.7.2 Vickers hardness calculation

2 cos(22°)
dy +dy\
2

where dy, ds are the diagonals of the indentation in mm, and F is the applied force in N.

HV =0.102- F-

10.7.3 Low-alloyed (Mild) Steel 34CrMo4

This alloyed steel contains 0.34 wt% C, 1 wt% Cr, and 0.2 wt% Mo. It has more bainite, higher ductility,
greater hardening depth.

e Larger bainite region that in plain-carbon steel

o Increased toughness and ductility compared to martensite

¢ Greater hardening depth because slower cooling can still produce martensite or bainite
Typical hardness for cooling path

e Martensite: about 650-640 HV

« Bainite: about 300-240 HV

o Ferrite-pearlite: about 200 HV
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_Temperature in °C

1000 | Continuous-cooling transformation diagram low-alloy steel 34CrMo4 |

0T AN BN BN\
rlite

600 - 5

Austenite

400

200
200 . .
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0 . >
10 100 101 102 108 104 105

10.8 Real-life Continuous-Cooling Transformation Diagram (CCT)

The Real-life CCT diagram shows the transformation behavior under real continuous cooling, illustrating
transformation ranges for austenite, bainite, pearlite, and martensite.

10.8.1 Carbon steel C45E

Carbon steel C45E requires high cooling rates to form martensite.
e High cooling rate is needed to reach the martensite region
o Hardening depth is limited due to the need for fast cooling

e Maximum martensitic hardness is reached only to about 5 mm depth from the surface

10.8.2 Low-alloyed (mild) steel 42CrMo4

Low-alloy steel 42CrMo4 contains 0.42 wt% C, 1 wt% Cr, and 0.2 wt% Mo. It shows improved hardenability
compared to plain-carbon steels. The martensite region is reached at slower cooling rates, and the bainite
formation is more likely.

o Slower cooling still produces martensite, which reduces quench distortions
o Hardening depth greater than 5 mm, so thicker parts can be through-hardened or quenched and tempered

o Higher bainite fraction possible, giving a good strength-ductility balance

10.9 Isothermal Transformation Diagram
Bainite can also be formed in carbon steels through isothermal transformation:
o Up to 100% bainite possible in unalloyed carbon steels
e Lower cost than low-alloy steels
o Use: automotive parts such as disc springs
e Cons: quenching baths often contain liquid lead or toxic salts

Isothermal transformation diagram for C35E shows ferrite, pearlite, bainite, and martensite formation at
constant temperatures. Hardness increases from ferrite-pearlite to bainite to martensite
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11 Heat treatments

11.1 Heat treatments overview

Heat treatments adjust the properties of steel after primary and secondary metallurgy:

¢ Annealing treatments refine microstructure and reduce internal stresses

e Hardening and tempering increase strength and wear resistance

e Surface heat treatments improve surface hardness while maintaining a tough core

Blast

Ore

Furnace
—_—

Pig iron

Secondary Metallurgy:

( Annealing Treatments )

0OBC
 ——

Crude
Steel

v

EF
<—

Quality | High-Grade Steel

Scrap

(Deoxidation, Alloying, Purificaion)

( Hardening, QT, etc. )

(Homogenization Annealing) '\

Normalizing (N, M) ]

Soft Annealing )

v

HEAT TREATMENTS)

l

C
¢
C

Stress Relief Annealing ) (

Surface
Heat Treatments

/ ( Martensitic Hardening )

(Quench and Temper (QT))

C Bainitic Transformations)
CPearIitic Lead (Pb) Patenting)

C>0.3%, Martensit

Gurface Hardening:

3[€

Case Hardening:
<0.25%, Martensi

Nitriding:
eramic Nitride Layer

J(e
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11.2 Typical annealing treatments of steel

Annealing adjusts the microstructure of steel by heating it to a defined temperature range followed by controlled
cooling.

Eisen-Kohlenstoffdiagramm - metastabil

B( Schmelze + §-MK

Homogenization

Normalizing

Soft Annealing

Stress Relief A 1 2 3 4

Annealin g Massenanteil Kohlenstoff [ %C ]

Fe,C 7
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Part IV

Hardness and Toughness

12 Hardness

Hardness is a measure of resistance against localizer plastic deformation. It is often considered a minimally
invasive way of estimating material strength.

12.1 Hardness testing
12.1.1 Common testing methods

Testing method | Application

Vickers (HV) Universal application

Rockwell (HRC) Suitable for hard steels

Brinell (HB) Used for soft steels and aluminum
Berkovich Used in nanoindentation

Shore A and D For rubber and plastic

Approximate relation:

| R, ~3x HB or HV |

12.2 Examples of Hardness Testing Procedures
12.2.1 Indentation depth

Hardness is measured based on how deep the indenter penetrates the material:
o Rockwell C hardness (HRC) for hard metals

 Shore hardness (A,D) for polymers and elastomers

| Initial force |

Rockwell hardness testing

12.2.2 Indentation Area
Hardness is determined by the surface area of the indentation left in the material:
o Brinell hardness: Ball indenter for soft metals

e Vickers hardness: Diamond pyramind indenter, universal application
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Brinell hardness testing (left), Vickers hardness testing (right)

12.3 Conversion of Hardness values and Tensile strength (Steels)

Hardness v alues can be correlated to tensile strength. Conversion tables are available to relate HV, HB, and
HRC to ultimate tensile strength in MPa.

12.3.1 Hardness - Tensile strength conversion table (Steels)

Tensile strength | Vickers hardness | Brinell hardness | Rockwell hardness

in MPa Hv HB HRC

900 67.0

850 65.6

800 64.0

750 62.2

700 60.1

2180 650 618 57.8

1995 600 570 55.2

1810 550 523 52.3

1630 500 475 49.1

1455 450 428 45.3

1290 400 380 40.8

1125 350 333 35.5

965 300 285 29.8

800 250 238 22.2
640 200 190
480 150 143
320 100 95
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13 Notch Impact Toughness

13.1 Impact Notch Toughness Test (Charpy)
o Applied mainly to structural steel (BCC, such as shipbuilding, bridges, oil platforms, pylons)
o The test determines:
— The transition temperature from ductile to brittle fracture
— The absorbed impact energy (“notch toughness”)

o Failure hypotesis: Crack propagation under sudden, high-impact loads

13.2 Toughness explaination
13.2.1 Material behavior
e Tough material: Absorb high energy before fracture (e.g. leather)

o Brittle material: Fracture with little energy absorption (e.g. glass)

13.2.2 Energy criterion
e Ductile fracture: Defined ductile if absorbes > 27 J of the impact energy
e Brittle fracture: Defined brittle if absorbes > 27 J of the impact energy

13.2.3 Stress State dependence
o Monoaxial (tensile test): Material can yield in lateral directions
 Biaxial (pressure vessels): Yield possible in one direction

o Triaxial (notches): No yielding possible, leads more likely to brittle failure

13.3 Charpy Test

The Charpy impact test evaluates a material’s toughness by measuring the energy absorbed during fracture
under a sudden impact load. It is widely used to determine the ductile-brittle transition temperature of steels
and to compare the toughness of different alloys

13.3.1 Test setup
e Specimen: Standard rectangular bar, with a V- or U-shaped notch at the center
e The V- or U-notch creates a stress concentration, forcing tracture to start there

e Impact: A heavy pendulum strikes the specimen at the opposite side of the notch, producing fracture

e Measurement: The energy absorbed is read from a calibrated scale linked to the pendulum swing

13.3.2 Differences between Charpy and Izod impact tests

Charpy Izod
Types of Notches U- and V-Notch V-Notch only
Specimen Position Horizontally Vertically
Material Tested Metals only Plastic and metals
Striking point Middle of the sample | Upper tip of the sample
Specimen dimension | 55x10x10 mm 756x10x10 mm
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13.4 Fracture types

H n' B
.
Ductile fracture Mixed fracture Brittle fracture

13.5 Absorbed Energy - Temperature Graph

250 '
odssthal Upper shelf
Ductile fracture
u 5235J*T Structural steel
A X5CrNi18-104+C S235JR,BCC g4 O
2@ 200
S
(=]
o ™
£
S CrNi steel, FCC ’
> 150 2 ;slcsﬁié-m "
& K rNi 2 Transition
3 | (mixed fracture)
g i’ M
°
a 100
o
E
-
]
5 50
5 1
g% 27
2 | = | — _Lower shelf
brittle fracture
0 I i' :

-200 -150 100  Tirgps-50  Tirgns O 50 100
Test temperature in °C

13.6 BCC brittle behavior at low temperatures
13.6.1 Cottrell Atmospheres

o Packing efficiency: in a-iron with BCC structure, the octahedral sites for interstitial atoms (e.g. carbon,
nitrogen) are much smaller than in 7-iron with an FCC structure

¢ C solubility and diffusivity higher in BCC: small intestitial atoms, especially carbon, preferentially diffuse
into the stress fields around dislocation lines, where more space is available

e This leads to the formation of Cottrell atmospheres, which lock dislocations by clustering interstitial atoms
around them
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13.6.2 Dislocation pinning

Cottrell atmospheres cause a pronounced upper yield point Repy in tensile tests of many BCC metals

They are also responsible for the brittle fracture behavior of BCC metals at low temperatures, as revealed
by the notch impact test

For plastic deformation to occur, dislocations must first break away from the Cottrell atmospheres
Hardening a metal reduces its ductility, since the molecules cannot slip freely anymore, causing brittleness

At low temperatures or high strain rates, this release is particularly difficult, leading to dislocation pinning
and increased brittleness

13.7 Absorbed Notch Impact Energy

The absorbed notch impact energy indicates a material’s resistance to brittle fracture and is widely used to
compare the toughness of structural steels and quenched-and-tempered (Q+T) steels:

Test temperature Absorbed Notch Absorbed Notch Absorbed Notch
in °C Impact Energy > 27 J | Impact Energy > 40 J | Impact Energy > 60 J
20 JR KR LR
0 JO KO LO
-20 J2 K2 L2
-30 J3 K3 L3
-40 J4 K4 L4
-50 J5 K5 L5
-60 J6 K6 L6

Example: S235JO — S: Steel, 235: R,,,, JO: at 0°C

13.8 Summary of Notch Impact Test

13.8.1 Factors promoting brittle fracture

« Notches: Create multiaxial stress states that favor brittle failure

¢ Sudden loading: Allows little or no time for plastic deformation

13.8.2 Qualitative assessment of fracture behavior

o Differentiation between ductile and brittle failure based on absorbed impact of energy and fracture

surface appearance

« BCC metals: show a clear transition from ductile failure at high temperatures to brittle failure at low

temperatures

13.8.3 Applications of the test

o Estabilishing quality classes and ranking structural steels and pressure vessel steels

¢ Quality control after heat treatments

46



Part V
Aluminum - Wrought & Cast Alloys

Opening exercise - Name 5 properties and 5 application of aluminum alloys

14

Property Application
Heat conductivity Heat exchangers
Electrical conductivity High voltage lines

El i i housi
Corrosion resistance (< 10 pH only) cctronic appliance housing,

architecture
Non-magnetic Electronic appliance housing
Light-weight Aerospace, automotive industry

Introduction

Not relevant for the exam

14.1 Background information about aluminum

Relatively young metal, discovered about 100 years ago

More expensive than steel

Density p = 2.7 g/cm?

Highly malleable (FCC structure)

Electrical conductivity: 37.7 S-m/mm?

Young’s modulus E: 70 GPa (lower than steel)

Melting point: 660°C (lower for cast alloys)

Naturally passivated: resistant to water and weather within pH 4.5 — 8.5

Food-safe

Poor corrosion resistance at pH >10 (alkaline environments such as dishwasher or concrete water)

Oversaturated 5xxx alloys and high-strength 2xxx and 7xxx alloys are prone to corrosion

14.2 Aluminum production

14.2.1 Bayer process

Bauxite is crushed and dissolved in hot sodium hydroxide
Aluminum hydroxide (A1(OH)3) precipitates from the solution

It is then calcinated (heated) to remove water, producing alumina (Al;O3)

14.2.2 Smelting flux electrolysis (Hall-Héroult process)

15

Alumina is dissolved in molten cryolite

Al electric current passes through, reducing A1t to liquid aluminum at the cathode and releasing Os at
the carbon anode

Designation of alloys and conditional designations

47



15.1 Numerical Designation System (DIN EN 573-1)

EN AW-: Wrought alloys
EN AW-: Cast alloys
N Main alloying Strain- Age- Type of 1*‘ L 0)?
T elements hardened | hardened hardening Nr. Mallﬂ auoi’lng
elements
1XXX | none, >99% Al
3XXX | Mn Solid-solution hardened 1XXX0 >99% Al
XX | Si Yes (H) | No Cold-work hardened 2XXX0 Cu
1 Fine-grain hardened
4XXX0 | Si
5XXX | Mg, (>3% corrosion)
XX | G 5XXX0 | Mg
u
TXXX0 | Zn
6XXX | Mg + Si R
g + o1 in part Yes (T) Precipitation SXXX0 Sn
7TXXX | Zn + Mg (+Cu,...) hardened o n
9 0 -
8XXX | others (Li, Sc, Fe) Pre-aoys
15.2 Condition Designation (DIN EN 515)
Hxx | Meaning
Letter | Meaning Hx1 | 1/8-hard
F Without post-treatment / as fabricated (e.g. cast) Hx2 | 1/4-hard
@) Annealed Hx4 | 1/2-hard
H Strain hardenend Hx6 | 3/4-hard
T Thermally treated Hx8 | hard
Hx9 | extra hard (Hx8 + 14 MPa)
W | solution annealed + quenched (unstable)
T1 | hot-formed + quenched + naturally aged
T2 | hot-formed + quenched + cold-formed + naturally aged
T3 | solution annealed | + quenched | + cold-formed | 4+ naturally aged
T4 | solution annealed | + quenched + naturally aged
T5 | hot-formed + quenched + artificially aged
T6 | solution annealed | + quenched + artificially aged
T7 | solution annealed | + quenched + over-aged
T8 | solution annealed | + quenched | + cold-formed | + artificially aged
250 rolling degree [%)] ? 510 715 8|5
15.3 Cold-working H
In Hxn, where n = [1,9], x: 200 J3S;relied (H18)
b'q Meaning
x=1 | cold-worked ﬂg 190
cold-worked and partially annealed o
x=2 . . 2100
for improved temperature resistance o
cold-worked and stabilization-annealed
x=3 .
to prevent aging at room temperature 90 1
x=4 | cold-worked and varnished + blacked
D T T T 7/ T T
RT 100° 200° 300° 0.0 1.0 2.0
MT [°C] o
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15.4 Precipitation hardening (Age hardening)

15.4.1 Age hardening steps

1. Solution annealing (W): dissolves existing precipitates in the alloy

2. Quenching: rapidly cools to form a supersaturated solid solution without precipitates

3. Aging: small, coherent precipitates form, strengthening the alloy

15.4.2 Aging types

Type Temperature

Properties

Natural aging | Room temperature

Moderate strength, lower hardness, higher ductility

Artificial aging

Elevated temperature (120-200°C)

higher strength and hardness, lower ductility

15.4.3 Graph representation

T1 to T8 process paths are visible in section 14.2, table 14.2.3.

Temperature Coherent Semi-coherent
1 Solution precipitates precipitates
annealing
o
c
o
3
EX Smaller coherent
2 precipitates
Solid solution sa?l.‘llreart-ed / . t.' —
crystal i wo-step artificia
ry crystal A!‘tIfICIal over-aging
aging (T6)
' Natural aging (T4)
Equilibrium condition (Cold-forming)
after homogenization Deep-freezing
............................. » Time

15.5 Lattice coherency of precipitates

e Coherent precipitates: Lattice planes align perfectly, and elastic distortions extend deep into the

surrounding crystal.
significant increase in strength

These distortions act as strong barriers to dislocation movement, resulting in a

e Semi-coherent precipitates: Partial lattice mismatch causes dislocations at the interface, reducing
elastic distortion and strength compared to coherent precipitates

e Incoherent precipitates: Lattice planes are misaligned and incompatible with the matrix, producting
little to no elastic distortion and minimal strengthening effect

Coherent (left), Semi-coherent
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15.6 Precipitation hardening: Artificial aging

Material strength rises with the formation of coherent precipitates and reaches its maximum when tey are finely
dispesed. Over-aging leads to loss of coherency and reduced strength.

Material {
Strength
"Larger‘_‘c_oherent
Small coherent pr.ec-:lpll:aj:es Semi-coherent
precipitates ot o000 precipitates
! :5 :: 3333 Incoherent
o4 1 ipi
Over-saturated| i::: :H :: - 3 prcjc-lp-lt-afes
solid solution ; s : OO B
crystal t et N e e
? “ _ - T = TTEeeee - "o e
273 -7 (3) T @ e e
3| e @ -3
7 (2) Maximum = @
Strength
(5)
Aging Time

Artificial aging of EN AW-2024 (similar to 6000 and 7000 alloys)

15.7 Precipitates in aluminum alloys
 Precipitates are plate- or disc-shaped, observable under transmission electron microscopy (TEM)
e Coherent GPII zones are metastable and maintain lattice alignment with the matrix

o Fully stable precipitates become larger and incoherent, leading to over-aging and reduced strength

15.7.1 Precipitation hardening in Aerospace
Process overview of a sheet metal ribs in the horizontal stabilizer of the PC-12 aircraft (EN AW-2024/A1Cu4Mgl)
1. Solution annealing and quenching: material becomes soft
2. (Optional) Deep freezing for storage or transport to prevent premature aging
3. Cold forming using a hydrostatic press with a single-piece die
4. Natural aging at room temperature for approximately 4-5 days, final condition: EN AW-2024-T42
5

. Surface treatment: chromating, priming, and painting.
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16 Aluminum Wrought Alloys

16.1 Pure Aluminum
16.1.1 Properties

« Excellent electrical conductivity. Altough precious metals such as silver, gold, and copper conduct
better, aluminum offers superior conductivity when considering both weight and cost

e High thermal conductivity, making it ideal for heat dissipation applications
¢ Good corrosion resistance, along with excellent formability and weldability
e Low inherent strength, but can be strengthened through cold working and grain refinement

e Certain grades are highly suitable for surface finishing, including chemical and electrolytic polishing
and anodizing

16.1.2 Applications

¢ Electrical engineering and electronics: used in power rails, bonding wires, conductive inks, and overhead
high-voltage cables (often with a steel core for added strength)

o Heat exchangers and heat sinks: utilized for efficient heat transfer; when in contact with copper, aluminum
should be replaced with stainless steel to prevent galvanic corrosion

o Corrosion-resistant cladding: applied as a protective lazer on high-strength aluminum sheets to improve
corrosion resistance, commonly used in aircraft and automotive structures

o Food industriy: used for foils (EN AW-1100), dishes, and coffee capsules due to excellent formability,
weldability, gas and odor tightness, and food safety

16.2 Wrought Alloys: System Al-Mn, (Al-Si)
16.2.1 EN AW-3XXX
¢ Strengthened by solid-solution and cold-work hardening
e Stronger than pure aluminum, yet remains easy to form, weld, and offers good corrosion resistance

o Typical applications: chemical and storage tanks, kitchen and cooking equipment, heat exchangers and
conductors (EN AW-3003), gas pipes, architectural components, and beverage can bodies (EN AW-3004)

16.2.2 (EN AW-4XXX)
e Strengthened by solid-solution and cold-work hardening

o Used mainly as cast alloys and corrosion-resistant coatings, such as EN AC-44200 (Al-Sil12 eutectic
alloy)

e Commonly applied in 4XXX welding wires due to their low eutectic melting point

16.3 Wrought Alloys: System Al-Mg

16.3.1 EN AW-5XXX
e Strengtened by solid-solution and cold-work hardening
e Stronger than 3000-series alloy
o Excellent weldability and corrosion resistance

e At higher magnesium content, incoherent precipitates form, making these alloys unsuitable for age
hardening

o Unlike high-strength precipitation-hardened aluminum alloys, strength loss in weld zones is minimal if the
alloy is not supersaturated

« Typical applications: Used for road signs, household appliances, ship components, cookware, food
processing equipment, hydraulic lines, and fuel tanks (EN AW-5052). Also applied in beverage can lids
(EN AW-5182), pressure vessels, truck and trailed bodies, ship hulls,rocket parts, and railway wagons (EN
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AW-5083). In aircraft contruction, alloys such as EN AW-5052 and EN AW-5086 in cold-worked (HXX)
condition are used for sheets and pipes

16.4 High-Strength Wrought Alloys
16.4.1 For lightweight construction

o Over-saturated (and work-hardened) 5XXX Al-Mg alloys with more than 3% Mg

¢ Precipitation-hardened alloys (sometimes combined with cold-work hardening):

6XXX (Al-Mg-Si), 2XXX (Al-Cu), 7XXX (Al-Zn-Mg), (8XXX and special alloys, e.g. Al-Li, Al-Sc, Al-Fe)

16.4.2 Over-Saturated 5XXX
Risk of Intercrystalline Corrosion (IC) and Stress Corrosion Cracking (SCC)!

o Alloys with < 3% Mg form a single-phase « solid solution of aluminum at room temperature

o Alloys with > 3% Mg remain homogeneous only after quenching, forming a super-saturated «
solid solution

¢ When exposed to temperature between 60°C and 200°C, these alloys revert to a stable two-phase a+ 3
structure

o The B intermetallic phase (AlgMgs) forms mainly along grain bonundaries, making the material
susceptible to IC and SCC
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Real example of Super-Saturated 5XXX Rods

¢ Minimal surface corrosion in salt water below 60°C

o Over-saturated 5XXX alloys: Comparable strength to 6XXX-T6 (without T6 treatment), but prone to
SCC and IC in chloride environments above 60° (e.g. sunlight exposure). The B-phase at grain boudaries
promotes corrosion; H3x stabilization is effective only up to 80°C

e Arid coastal climates: sald-laden winds and daily humidity cycles cause condensation and evaporation,
increasing corrosion risk

e <3% Mg alloys: no SCC, but low strength, requiring heavy cold working, which itself raises corrosion
susceptibility

Compairson with 6 XXX-T6:
o Achieves similar strength as over-saturated (and cold-worked) 5XXX alloys, with no SCC risk
o Can still experience IC if Cu > 0.1%
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16.5 Precipitation-Hardenable Alloys: System Al-Mg-Si

Al-Mg-Si systems are suitable for everyday use

16.5.1 EN AW-6XXX
o Precipitation hardening: main alloying elements are magnesium and silicon

e Balanced performance: excellent combination of strength and technological properties, including
formability, weldability, anodizability, machinability, and corrosion resistance

o Typical applications:
— EN AW-6061: bicycle and e-bike frames, tank wagons, and X-ray beam shaper parts
— EN AW-6062: aerospace interion components, extruded profiles, cranes, and ore containers

— EN AW-6063: architectural elements, doors, windows, consumer products (smatphones/laptop
housings), and shop interiors

e EN AW-6026 and EN AW-6012: offer excellent machinability, sometimes achieved by adding small
amounts of lead

e EN AW-6101: used for mechanically stable electrical conductors

16.6 High-Strength Wrought Alloys: System Al-Cu
16.6.1 EN AW-2XXX
EN AW-2024 is the most important alloy for aircraft sheets
o Naturally aged (T3, T4): high fatigue strength
« Artificially aged (T6): high static strength
o Poor weldability (by melting), therefore friction stir welding (FSW) or laser welding is preferred
o Prone to corrosion. Corrosion protection: Chromatization (CCC), primer, Dinitrol
e Due to over-aging, hardened aluminum alloys generally cannot be used above 100-180°C

« EN AW-2124-T851, CCC, Primem, PUR: Solution annealing, water quenching, stress relief by controlled
stretching, forming, and natural aging.

16.7 High-Strength Wrought Alloys: System Al-Zn-Mg
16.7.1 EN AW-7XXX
o Precipitation-hardened: main alloying elements are zinc, magnesium, (copper)

o Artificially aged: very hard strength, but poor corrosion resistance and not weldable by
melting (FSW is preferred due to lower heat and reduced heat-affected zones)

o Typical applications:
— EN AW-7005: laptop and smartphone housings, baseball and golf clubs
— EN AW-7010: climbing carabiners
— EN AW-7050: upper wings and structural parts in commercial aircraft

— EN AW-7075: aerospace components, ski poles, and other high-strength structures

Risk of stress corrosion cracking (SCC) and exfoliation corrosion:

o Artificial aging, slightly over-aged (T7): typically 12-24h at 120°C (formation of coherent precipitates),
followed by 4-6h at 175°C (conversion to semi-coherent precipitates), reducing lattice distortion and
internal stress

e T6 and T8 are used for non-corrosive environments (no oxygen or moisture) or short service life
application (e.g. racing)

¢ Maximum strength due to coherent precipitates
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16.8 Mechanical Properties Overview

Short name Short name Conditio Rpo.2 R A
(Numerical) (Chemical) ndiion (MPa) (MPa) (%)
35 90 40
EN AW-1100 | EN AW-A199.0Cu °
H19 160 180 1
60 200 16
EN AW-3004 | EN AW-AIMn1Mgl °
H18 230 260 2
F 110 270 10
EN AW-5083 | EN AW-AIMg4.5Mn0.7
H14 280 400 3
o 140 220 13
T4 275 425 14
EN AW-2024 | EN AW-AICu4Mgl
T6 315 425 4
TS 400 455
o 55 125 25
EN AW-6061 | EN AW-AIMg1SiCu T4 145 240 22
T6 275 310 12
o 110 160 12
EN AW-6082 | EN AW-AISilMgMn T4 110 205 12
T6 260 310 8
165 275 8
EN AW-7075 | EN AW-AlZn5.5MgCu °
T6 500 560 7
EN AW-2195 | EN AW-AICu4Lil T8 548 586 8
17 Aluminum Cast Alloys
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Al-Si phase diagram showing hypoeutectic, eutectic, and hypereutectic regions
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17.1 Eutectic Cast Alloys
17.1.1 Properties

Easy to cast: lowest melting temperature with a distinct melting point (no melting range)
Excellent flow behavior and low viscosity
Molds fill easily, allowing fine and detailed structures to be cast

Adding sodium (Na) or strontium (Sr) refined the eutectic structure and slightly shifts the eutectic point
to higher silicon contents (13-14%)

Adding titanium (Ti) or titanium boride (TiB3) prevents the formation of undesirable silicon needles or
plates in the eutectic microstructure

17.1.2 Typical alloys

EN AC-44100 and EN AC-44200 (both designed as EN AC-AlSi12) have a good corrosion resistance
EN AC-44300 (EN AC-AlSil12(Fe)) contains approx. 1% Fe
EN AC-47000 (EN AC-AlSi12(Cu)) contains approx. 1% Cu

17.1.3 Typical applications

Engine and pump housing, ribbed and thin-walled components, cylinder blocks and heads (upper part of
the engine block)

Hot-dip coatings for steel, providing corrosion protections

17.2 Hypoeutectic Cast Alloys
17.2.1 Properties

Crystallization occurs within the two-phase region: liquid melt plus primary aluminum solid-solution
crystals

Microstructure at room temperature: primary aluminum solid-solution crystals with residual eutectic

Samm additions of Mg, Cu, or Fe enable effective precipitation hardening of the primary aluminum solid-
solution phase

17.2.2 Applications

Electric vehicle engine housing made of EN AC-46500 (EN AC-AlSi8Cu3)

Electric vehicle chassis components made EN AC-42000 (EN AC-AlSi8Mg) and EN AC-43500 (EN AC-
AlISi10MgMn)

Coarse-grained eut. (Left), Lamellar needle-like eut. (Middle), Refined fine-grained eut. Sr/Na (Right)
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17.3 Hypereutectic Cast Alloys
17.3.1 Properties
 Contain up to ~ 25% silicon (Si)
e Primary silicon crystal provide excellent wear resistance even at high temperatures and reduce thermal
expansion
17.3.2 Applications
o Used in pistons for combustion engines (piston alloys)
« EN AC-48000: used for pistons in automotive engines, offers high wear resistance and high strength
in the artificially aged T6 condition (Rpo.2 ~ 240MPa, R, ~ 280MPa)
17.3.3 Recent developments

e In improved, near-eutectic Al-Si alloys, the formation of primary silicon crystals can be promoted by
adding small amounts of aluminum phosphide as a nucleating agent

o Primary Si crystals form, for instance, in the the near-eutectic alloy EN AC-48000 (EN AC-AlSi12CuNiMg),
which containg 10-13.5% Si, about 1% Cu, Mg, and Ni.

17.4 Cast alloys recap

Comparison of hypoeutectic, eutectic, and hypereutectic Al-Si cast alloys

Alloy type Main features Advantages Disadvantages
Good castability
Good ductility Lower wear resistance

Hypoeutectic | Al-rich (<12% Si) Precipitation hardenable (Mg, Cu, Fe) | Higher thermal expansion

Easy to machine

Excellent fluidity and castability

Eutectic composition Moderate mechanical strength

Eutectic Approx. 12% Si Fine structu're, casy mold filling Can be brittle if unmodified
Good corrosion resistance
Very high wear resistance Poor ductility
Hypereutectic | Si-rich (12% — 25%) | Low thermal expansion Hard to machine

Good dimensional stability at high T | Difficult to cast (segregation)

In summary:
« Hypoeutectic alloys: best mechanical balance and toughness
e Eutectic alloys: best castability and corrosion resistance

e Hypereutectic alloys: best wear resistance and thermal stability

18 Surface technology - corrosion protection

18.1 Natural Oxide Layer on Aluminum

e Aluminum has a strong affinity for oxygen, leading to the immediate formation of a natural, compact
layer of Al,O3. This oxide layer is:

— Ceramic and very hard
— Corrosion-resistant, as it is already oxidized (passivated)
— Chemically stable within a pH range of 5 to 8
— Extremely thin, only a few nanometers thick
e The oxide layer can be strengthened (thickened) by:
— Chemical processes such as chromating, chromitizing, or water boiling

— Electrochemical processes such as anodizing
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18.2 Chemical Conversion Coatings
¢ Removal of the natural oxide layer through pickling or etching

e Conversion of aluminum into a layer of metal oxide, chromate, chromite, or phosphate using the corresponding
acids

o Produces a very thin coating (in the micrometer range, typically 0.1 - 5 g/m?) that may contain
microcracks

e Common brands: Alodine (R), Bonder (R)
o Chromate Conversion Coating (CCC) is based on chromium acid (Cr VI):

— Can be transparent, yellow, or blue

— Serves as an adhesion layer for primers, varnishes, and paints

— Future alternatives: Cr(VI)-free systems such as chromiting (Cr III) or chromous acid treatments
o Phosphating (phosphoric acid-based):

— Acts as an adhesive primer for paint or varnish

— Commonly used in the food industry

18.3 Electrochemical Anodizing

18.3.1 GS process

Uses direct current (DC) with sulfuric acid. Produces oxide layers up to 30 pum thick. Mainly decorative;
color pigments (exchept white) can be introduced into the pores.

18.3.2 GSX process

Uses direct current (DC) with sulfuric and oxalic acids. Creates thicker layers up to 80-150 pm, offering
excellent wear protection.

18.3.3 Chromic Acid Anodizing (CAA) process

Produces a thin, flexible, and low-crack oxide layer with very high corrosion resistance. Used only in
aerospace applications due to the carcinogenic Cr(VI) solutions required.

18.3.4 Tartaric Sulfuric Acid Anoditing (TSA) process

Developed as a safer and environmentally friendly alternative to the carcinogenic CAA process.

Oxide Pores
layer

. Barrier
Base material layer

(aluminum)
L~

Base material Barrier layer
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18.4 Porosity

¢ The anodized oxide layer is porous, consisting of open cylindrical pores extending from the surface down
to a thin, dense barrier layer

e These open pores can absorb dyes, lubricants, or sealing agents to improve appearance, wear resistance,
and corrosion protection

o After sealing (by hydration or chemical treatment), the pores become closed, preventing further penetration
of contaminants or moisture

o The controlled porosity is a key feature that makes anodized aluminum both functional and decorative

F—100nm Arbeitsabstand=4mm Hochsp.=10.00kV

Closed pores (Left), Open pores (Right)

18.5 High-Strength Aluminum Alloys in Aviation

Corrosion protection using a simple oxide layes is often insufficient:

o High-strength aluminum alloys (2XXX, 7XXX) offer poor corrosion resistance when protected only
by natural oxide layers or standard anodizing

e Multi-step surface treatment is required:
— Cleaning (pickling or etching) to remove impurities and the natural oxide film

— Chromating or anodizing with Cr(VI) (CCC or CAA): still permitted in aerospace applications,
although TSA is preferred for health and environmental reasons

— Primer: a diluted epoxy coating, typically green-yellow in color due to Cr(VI)
— Varnish/paint: polyurethane (PUR) finish for enhanced protection and durability

e Alloys of the 6XXX, 5XXX, 3XXX, and 1XXX series are well-suited for GS anodizing and are
sometimes finished with paint coating for additional protection

18.6 Recent alternatives (REACH, RoHS)
18.6.1 CAA replacement
CAA is being replaced by TSA. The consequences of using TSA are many:

e Slightly reduced fatigue strength and somewhat lower corrosion resistance

¢ Requires shorter maintenance intervals due to increased risk of fatigue crack and corrosion damage

18.6.2 Chromating alternatives

Instead of Cr(VI) and chromic acid, chromitizing with Cr(III) (chromous acid) is used

18.6.3 Primer alternatives

Experiments are ongoing with Li- and Zn-based primers to replace Cr(VI) compounds

18.6.4 Cadmium (Cd) replacements

On precipitation-hardened steels such as bolts and screws, Zn-Ni galvanic coatings are now applied instead
of cadmium plating

58



Part V1

Metallography and Microscopy

19 Steel Microstructure

Carbon steels and cast irons, Fe-C phase-diagram
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Fe-C phase diagram

19.0.1 Hypoeutectoid Steel L;
19.0.2 Eutectoid Steel L,
19.0.3 Hypereutectoid Steel Lg

19.1 Faster Cooling and Quenching

19.2 Martensite

19.3 Bainite

19.4 Martensitic Hardening vs. Q+T Treatment

20 Metallographic microstructure analysis

20.1 Crystallographic Structure
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Part VII

Measurement of chemical compositions

21 Selected methods

21.1 X-ray Fluorescence (XRF)
21.2 Optical Emission Spectrometry (OES)

21.3 Energy-dispersive spectroscopy (EDS, EDX, EDAX)
21.3.1 Line Scan EDS
21.3.2 EDS Area Scan

21.4 Infrared Spectroscopy for Polymers (FTIR)
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A Glossary

Alloy A mixture of two or more elements, where at least one element is a metal.
Amorphous Non-crystalline material with no long-range order.
Anisotropy Direction-dependent properties of a material (Monocrystalline and polycrystalline with texture)

Annealed A heat treatment process in which a metal is heated and slowly cooled to reduce internal stresses,
soften the material, and improve ductility and machinability.

Anodizing Electrochemical process that thickens and stabilizes the natural oxide layer to improve corrosion
and wear resistance.

Austenite (y-Fe) Face-centered cubic (FCC) phase of iron, stable at high temperatures and soluble up to 2%
carbon.

Bainite Strong, ductile microstructure formed in steels at temperatures between those that form pearlite and
martensite, consisting of a mixture of ferrite and carbides.

Barrier layer Dense sublayer at the base of anodic pores that protects the underlying metal.
Brittle Material that fractures without significant plastic deformation.
Brittleness The tendency of a material to fracture with little to no plastic deformation.

Carbide A compound composed of carbon and a less electronegative element, often forming hard materials
used in cutting tools and abrasives.

Carburizing A heat treatment process that enriches the surface layer of a low-carbon steel with carbon to
increase its hardness.

Cast The metal has been melted and poured into a mold, where it solidifies into shape without further
mechanical working.

Cementite (FesC) A hard, brittle intermetallic compound of iron and carbon, forming part of the microstructure
in steels and cast irons.

CHD Case hardening depth. The depth to which a material has been hardened by surface treatment processes.

Chromating Chemical conversion coating forming a thin chromate film for corrosion protection and paint
adhesion, traditionally Cr(VI)-based.

Coherent A condition in which the atomic planes of two phases, such as a precipitate and its matrix, are
continuous across their interface, resulting in lattice alignment and elastic strain without dislocations.

Corrosion Degradation of a metal by chemical of electrochemical reaction with its environment.

Cottrell atmosphere A cluster of intestitial atmos (e.g. C, N) around a dislocation in BCC metals, causing
dislocation pinning and higher yield stresses.

Crude steel Refined steel with < 2% carbon that has been produced but not yet refined or processed into
finished products.

Crystalline Material with atoms arranged in a highly ordered microscopic structure, forming a crystal lattice
that extends in all directions.

Dislocation A linear defect in the crystal structure where there is an irregularity in the arrangement of atoms.
Ductility The ability of a material to undergo plastic deformation before fracture.

Eutectic Alloy composition that solidifies at a single, lowest temperature, producing a fine and uniform
microstructure.

Fatigue Progressive structural damage caused by repeated or fluctuating stress below the static strength of
the material.

Ferrite (a-Fe) Body-centered cubic (BCC) phase of iron, stable at room temperature and low C solubility.

Hardening The process of increasing a material’s hardness and strength through various methods such as heat
treatment or work hardening.

Hardness Resistance of a material to localized plastic deformation, typically measured by indentation tests.
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HCF High-cycle fatigue. It occurs when materials are subjected to stresses much lower than their yield strength,
at a high number of cycles.

Heterogeneous Non-uniform composition and properties throughout the material.
Homogeneous Uniform composition and properties throughout the material.

Hypereutectic Alloy with more solute than the eutectic composition. It contains primary Si crystals and
eutectic matrix.

Hypoeutectic Alloy with less solute (e.g. Si) than the eutectic composition. It contains primary aluminum
crystals and eutectic mixture.

Impact Toughness The ability of a material to absorb energy under sudden loading before fracture.
Isothermal transformation A phase transformation that occurs at a constant temperature.

Isotropy Direction-independent properties of a material (Amorphous)

Ladle A large container used to hold and transport molten metal during steelmaking and casting processes.

LCF Low-cycle fatigue. It happens when materials are subjecter to higher stresses, typically exceeding the
yield strength, at a smaller number of cycles.

Martensite A hard, brittle phase formed by the rapid quenching of austenite, characterized by a body-centered
tetragonal (BCT) structure.

Mild steel Low-carbon steel with a carbon content of approximately 0.05% to 0.25%, known for its ductility
and weldability.

Monocrystalline Material consisting of a single crystal or a continuous crystal lattice with no grain boundaries.
NHD Nitriding hardening depth. The depth to which a material has been hardened by nitriding.

Nitriding A heat treatment process that introduces nitrogen into the surface of a steel to form hard nitrides,
enhancing surface hardness and wear resistance.

Oxide layer Protective film of aluminum oxide formed by oxidation or anodizing.
Passivation Process of forming a stable, protective oxide layer that prevents further oxidation or corrosion.

Pearlite A two-phase lamellar microstructure consisting of alternating layers of ferrite and cementite, formed
during the slow cooling of austenite.

Phase A region of material that is chemically and structurally uniform.

Phosphating Chemical treatment producing a phosphate layer for paint adhesion and corrosion resistance.
Pig iron High-carbon iron produced in a blast furnace, used as a raw material for making steel and cast iron.
Poisson’s ratio v The ratio of transverse strain to longitudinal strain in a material under uniaxial loading.
Polycrystalline Material composed of many crystallites of varying size and orientation.

Polymorphism / Allotropy Ability of a material to exist in more than one form or crystal structure.

Porosity Open microscopic pores in the oxide layer that can be filled (sealed) with dyes, lubrificants, or
inhibitors.

Precipitation hardening Heat-treatment process that strengthens alloys by forming finely dispersed precipitates.

Q+T Quenching and tempering. A heat treatment process that involves rapid cooling (quenching) followed
by reheating (tempering) to improve mechanical properties.

Quasi-isotropy Approximate isotropy in polycrystalline materials with random grain orientation (Polycrystalline
without texture)

Quenching A rapid cooling process used to harden steel by transforming austenite into martensite.
SHD Surface hardening depth. The depth to which the surface of a material has been hardened.
Shear modulus G The ratio of shear stress to shear strain in the elastic range of a material.

Slip Large displacement of one part of a crystal relative to another part along crystallographic planes and
directions.

Stainless steel Corrosion-resistant steel alloy containing a minimum of 10.5% chromium.
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Tempering A heat treatment process that reduces brittleness and increases toughness in quenched steels by
reheating to a temperature below the eutectoid temperature.

Toughness The ability of a material to absorb energy and plastically deform without fracturing.

TSA Tartaric-Sulfuric Acid Anodizing. Cr(VI)-free anodizing process used in aviation as a safer alternative to
CAA (chromic acid anodizing).

Vacancy A point defect in a crystal lattice where an atom is missing from its regular lattice site.

Varnish Transparent protective coating applied to stufaces, typically meltal, wood, or paint, to enhance
appearance and provide resistance against corrosion, moisture, and wear.

Wrought The metal has been mechanically worked or shaped (by rolling, forging, or extursion) after solidification,
giving it a refined structure and improved mechanical properties compared to cast metals.

Young’s modulus E The ratio of normal stress to longitudinal strain in the elastic range of a material.
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B Nomenclature

Alloy series

1XXX Commercially pure aluminum (high conductivity, soft)

2XXX Al-Cu alloys (high strength, poor corrosion resistance)

3XXX Al-Mn alloys (good formability, non-heat-treatable)

4XXX Al-Si alloys (good castability, used in welding)

5XXX Al-Mg alloys (good weldability and corrosion resistance)

6XXX Al-Mg-Si alloys (medium strength, excellent formability)

TXXX Al-Zn-Mg alloys (very high strength, lower corrosion resistance)

Coatings and Surface Treatments
CAA Chromic Acid Anodizing
CCcC Chromate Conversion Coating

Chromating Chemical conversion layer of chromates or chromites

Cr(IIT) Trivalent chromium (eco-friendly)

Cr(VI) Hexavalent chromium (toxic, high corrosion resistance)

GS Sulfuric Acid Anodizing (decorative)

GSX Sulfuric + Oxalic Acid Anodizing (protective, weat-resistant)

Phosphating Chemical conversion coating for paint adhesion

PUR Polyurethane paint or vanish (top protective layer)
TSA Tartaric-Sulfuric Acid Anodizing (Cr-free, aerospace use)
Zn-NI Zinc-Nickel galvanic coating for paint adhesion

Ductility measures

A Fracture strain

Ag Uniform strain

A, Elongation measured with Ly = n+/.Sy

KV Notch impact energy, in J, indicator of toughness
VA Contraction at fracture (elongation at break, in %)

Elastic moduli
E Young’s modulus — 70GPa for aluminum, 210 GPa for steel

G Shear modulus
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Material Characterization Techniques

EDS Energy-Dispersive Spectroscopy (also EDX, EDAX)

FTIR Fourier Transform Infrared Spectroscopy

OES Optical Emission Spectrometry

XRF X-ray Fluorescence

Ratios

v Poisson’s ratio

PREN Pitting Resistance Equivalent Number = %Cr + 3.3%Mo + 16%N

Strength measures

Ren Upper yield point
Ry Tensile strength
Rpo.2 0.2% yield strength
HB Brinell hardness
HRC Rockwell C hardness
HV Vickers hardness

Transformations and Processes abbreviations

AC Cast Aluminum

AW Wrought Aluminum

CHD Case Hardening Depth

DRI Direct Reduced Iron

EF Electric Furnace

EKD Iron-Iron Carbide Phase Diagram
ESR Electro Slag Remelting

ETG Name of the steel grade according to the Swiss standard
FSW Friction Stir Welding

HAZ Heat Affected Zone

HSS High-Speed Steel

1C Intercrystalline corrosion

Ly Hypoeutectoid Steel (0.35% C)
Lo Eutectoid Steel (0.8% C)
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Ls Hypereutectoid Steel (1.4% C)

NHD Nitriding Hardness Depth
OBC Oxygen-Blown Converter
OHF Open Hearth Furnace

PM Powder Metallurgy

Q+T Quenching and Tempering
SCC Stress Corrosion Cracking
SHD Surface Hardening Depth
VAR Vacuum Arc Remelting

ZTU/CCT  Continuous Cooling Transformation diagram

66



	I Physical metallurgy
	Material classes, structural models, basic concepts
	Material classes and typical properties
	Structural model of metals
	Structural model of ceramics
	Structural model of polymers
	Amorphous and crystalline materials
	Polycrystalline materials
	Monocrystalline materials
	Amorphous materials
	Structure difference

	Directionals dependence of the properties of materials
	Anisotropy and Isotropy
	Anisotropy of the Young's Modulus E in most cubic crystals
	Miller indices for crystal directions

	Directional dependence of properties in polycrystalline materials
	Polycrystalline materials without texture
	Polycrystalline materials with texture

	Material properties wrap-up
	Single crystal materials
	Polycrystalline materials without texture
	Polycrystalline materials with texture
	Amorphous materials

	Polymorphism (Allotropy)
	Polymorphism of Iron (Fe)
	Polymorphism of Carbon (C)
	Polymorphism of Nitinol (NiTi)

	Microstructure and Phases
	Homogeneous microstructure
	Heterogeneous microstructure

	Alloys
	Definition of an alloy
	Microstructure of alloys


	Most important metal structures and crystal lattice defects
	Lattice defects
	0-dimensional defect
	1-dimensional defect
	2-dimensional defect
	3-dimensional defect


	Elastic and plastic deformation
	Elastic deformation
	Atomic energy-distance model

	Elastic constants of isotropic materials
	Elastic stress, strain, and Young's modulus
	Poisson's ratio 
	Relationship between the 3 isotropic elastic constants G

	Plastic deformation in metals
	At room temperature
	At high temperatures

	Dislocation Slip Model
	Simplified model

	Slip systems
	Slip systems in FCC metals (Miller indices)
	Slip systems in HCP metals (Miller indices)
	Slip systems in BCC metals (Miller indices)

	Schmid's law of critical resolved shear stress
	Correlation between metals crystal structure and ductility
	Particulatiries in BCC metals
	Cottrell atmospheres and Dislocation pinning


	Strengthening mechanisms
	Metals mechanisms
	0-dimensional: Solid-solution hardening


	redTODO

	II Strength and Ductility
	Properties of material
	Failure hypotesis and Material testing methods (examples)

	Tensile test
	Engineering Stress and Stress conditions
	Engineering stress 
	Normal stress
	Shear stress
	Engineering strain 
	Hooke's law

	Elastic characteristics of some metals
	Typical stress-strain behavior of metals
	Yield Strength
	Graphical representation

	Young's modulus and Characteristic Strength Values
	Young's modulus E
	Yield stress R
	Tensile strength Rm
	Graphical representation

	Characteristic Ductility values
	Fracture Strain A
	Uniform Strain Ag
	Contraction at fracture Z

	True Stress and True Strain
	True stress *
	Ture strain *

	Polymers Tensile test
	Summary of tensile test
	Characteristic stress values
	Characteristic strain values
	Elastic range


	Other quasi-static mechanical tests
	Bending test
	Flexural strength (bend strength) b

	Torsion test
	Creep and Relaxation Tests (High temperatures)
	Creep test

	Isochronus –Diagram for Polymers


	III Steel - Technology and applications
	Steel technology
	Blast furnace and Pig iron
	Conversion to Crude Steel
	Oxygen-Blown Converter (OBC)
	Electric Furnace (EF)

	Secondary metallurgy (Ladle metallurgy)
	Purifying and alloying of the crude steel
	Important alloying elements
	Resume of alloying elements functions
	Electroslag remelting process (ESR)

	Continuous casting
	Recycling and Green Steel
	Summary of Steel Technology
	Blast furnace
	Crude steel production
	Secondary metallurgy
	Semi-finished products


	Microstructure formation
	Polymorphism of Iron
	-iron
	-iron (austenite)
	-iron (ferrite)

	Metastable iron - iron carbide phase diagram
	Phase diagram explaination

	Microstructure formation of Steel (Slow Cooling)
	Hypoeutectoid steel L1
	Eutectoid steel L2
	Hypereutectoid steel L3

	Faster Cooling / Quenching
	Difference between CCT and Iron-Iron Carbide Phase Diagram

	Martensite
	Bainite
	Structure

	Continuous-Cooling Transformation Diagram (CCT)
	Carbon steel C35E CCT
	Vickers hardness calculation
	Low-alloyed (Mild) Steel 34CrMo4

	Real-life Continuous-Cooling Transformation Diagram (CCT)
	Carbon steel C45E
	Low-alloyed (mild) steel 42CrMo4

	Isothermal Transformation Diagram

	Heat treatments
	Heat treatments overview
	Typical annealing treatments of steel


	IV Hardness and Toughness
	Hardness
	Hardness testing
	Common testing methods

	Examples of Hardness Testing Procedures
	Indentation depth
	Indentation Area

	Conversion of Hardness values and Tensile strength (Steels)
	Hardness - Tensile strength conversion table (Steels)


	Notch Impact Toughness
	Impact Notch Toughness Test (Charpy)
	Toughness explaination
	Material behavior
	Energy criterion
	Stress State dependence

	Charpy Test
	Test setup
	Differences between Charpy and Izod impact tests

	Fracture types
	Absorbed Energy - Temperature Graph
	BCC brittle behavior at low temperatures
	Cottrell Atmospheres
	Dislocation pinning

	Absorbed Notch Impact Energy
	Summary of Notch Impact Test
	Factors promoting brittle fracture
	Qualitative assessment of fracture behavior
	Applications of the test



	V Aluminum - Wrought & Cast Alloys
	Introduction
	Background information about aluminum
	Aluminum production
	Bayer process
	Smelting flux electrolysis (Hall-Héroult process)


	Designation of alloys and conditional designations
	Numerical Designation System (DIN EN 573-1)
	Condition Designation (DIN EN 515)
	Cold-working H
	Precipitation hardening (Age hardening)
	Age hardening steps
	Aging types
	Graph representation

	Lattice coherency of precipitates
	Precipitation hardening: Artificial aging
	Precipitates in aluminum alloys
	Precipitation hardening in Aerospace


	Aluminum Wrought Alloys
	Pure Aluminum
	Properties
	Applications

	Wrought Alloys: System Al-Mn, (Al-Si)
	EN AW-3XXX
	(EN AW-4XXX)

	Wrought Alloys: System Al-Mg
	EN AW-5XXX

	High-Strength Wrought Alloys
	For lightweight construction
	Over-Saturated 5XXX

	Precipitation-Hardenable Alloys: System Al-Mg-Si
	EN AW-6XXX

	High-Strength Wrought Alloys: System Al-Cu
	EN AW-2XXX

	High-Strength Wrought Alloys: System Al-Zn-Mg
	EN AW-7XXX

	Mechanical Properties Overview

	Aluminum Cast Alloys
	Eutectic Cast Alloys
	Properties
	Typical alloys
	Typical applications

	Hypoeutectic Cast Alloys
	Properties
	Applications

	Hypereutectic Cast Alloys
	Properties
	Applications
	Recent developments

	Cast alloys recap

	Surface technology - corrosion protection
	Natural Oxide Layer on Aluminum
	Chemical Conversion Coatings
	Electrochemical Anodizing
	GS process
	GSX process
	Chromic Acid Anodizing (CAA) process
	Tartaric Sulfuric Acid Anoditing (TSA) process

	Porosity
	High-Strength Aluminum Alloys in Aviation
	Recent alternatives (REACH, RoHS)
	CAA replacement
	Chromating alternatives
	Primer alternatives
	Cadmium (Cd) replacements



	VI Metallography and Microscopy
	Steel Microstructure
	Hypoeutectoid Steel L1
	Eutectoid Steel L2
	Hypereutectoid Steel L3

	Faster Cooling and Quenching
	Martensite
	Bainite
	Martensitic Hardening vs. Q+T Treatment

	Metallographic microstructure analysis
	Crystallographic Structure


	VII Measurement of chemical compositions
	Selected methods
	X-ray Fluorescence (XRF)
	Optical Emission Spectrometry (OES)
	Energy-dispersive spectroscopy (EDS, EDX, EDAX)
	Line Scan EDS
	EDS Area Scan

	Infrared Spectroscopy for Polymers (FTIR)

	Glossary
	Nomenclature


