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Part 1

Planes and surfaces in space

1 Plane 7 in space
Let m denote the plane:
Sy ET,8y ET, 8, €T
miar+by+cz+d=0

For S, € m= la+ 0b+ 0Oc + d = 0, hence

a+d=0

For Sy € m = 0a + 2b+ Oc + d = 0, hence

206+d=0

for S, € m = 0a + 0b+ 3¢ + d = 0, hence

3c+d=0
a+d=20 a=—d
20+d=0 =<2b=-d
3c+d=0 3c=—d

Case 1:

d=0=a=0,b=0,c=0=7:0=0= NOT a plane!

Case 2:
axr +by+cz+d a b c

d — — — — 1:

#F0=m 7 0=>dx+dy+dz+ 0
Hence:

a=—d g=-1

2b=-d ={b=-1

3c=—d £ =—1
Which leads to:

1 1
f—xr— -y — = 1=
T —2x 2y 3z—|— 0

Remark: the equation of a plane is defined up to a multiplication by a real number different from 0

e.g.: the same planed is shared between those 3 equations
ex 1)

2=0<=52=0<«<= —102=0
ex 2)

1 1
—x—iy—§z+1=0<:>6x+3y+22+6:0



2 Functions in two variables x and y

Let us take 7 : 22 — y? = 0 as example.

The plot would look like this:
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2.1 Spheres
3 Linear functions of two variables

We say that z is a linear function of x and vy, if there are constant a,b and d such that:

|z:aﬂc+by~|—d|

holds. Alternatively: if there are constant A, B, C, D, with C' # 0, such that:

|Az+By+Cz+D=0|

holds. Since C' # 0, we can rearrange this equation into:




4 Contour lines

z=f(x,y)
z=k keR

z = k represents all the possible horizontal planes

Ex:
z:x2—y2
z=k

T 2_9 Y

All the planes with equation z = k are parallel to the coordinate planes z = 0.
When z = k = 0, the circle is reduced to a point, the origin.
When k < 0, the equation 2% 4+ y? = k has no solution in R.

When k > 0, the equation 2 + y? = k represents a circle with radius vk centered at the origin.

5 Cylinders

A cylinder is a surface generated by all the lines parallel to a given line d and passing through a given curve C.

5.1 Property

Whenever you have a polynomial equation of degree at least 2 with a missing variable, then you have a cylinder
(up to few exceptions).

Ex:
2=y =1y —2=0

This is a cylinder with generatrix parallel to the z axis and directrix the parabola y? — z = 0 in the yz plane.




Part 11

Partial derivatives

For a multivariable function f(z,y, ...

), the partial derivative to one variable measures the instantaneous rate

of change of f when that variable changes and the others are held constant:

0z

Ox

= fz(m7y)

If z is a function of x and y, we define:

The rate of change of z with respect to x, with y fixed, at the point (x,y)=(a,b) as

= lim

Z (z,y)=(a+h,b) Z|<w7y):<a7b)

0z
or |(I,y):(a’b)

h—0

h

The rate of change of z with respect to y, with z fixed, at the point (z,y) = (a,b) as

= lim

2] wy—tavrn) = Zlaay—ai)

0z
%|(m>y):(a7b) h—0

h

For the lectures, we will be using the formula with 2-steps difference (Az,

(a+ h,b) — (a— h,b)):

0z

N Z|(a:,y):(a+h,b)

= 2l y—tan)

pove [

w=(apih) ~Z |(x,y):(a,b—h>

2h

0z
9y l@w=(ad

2h

6 Local linearization

6.1 Tangent plane of a function at point P

Let f(x,y) be our function and P(a,b) a point, P € f:

o) = Flah) + 5 Flab)(e = )+ 5 fla by~ )

7 Gradient

The gradient of a function z = f(x,y) is defined by:

grad f =V f =
where f, = %

fo+ fy7 = (;)
Yy
and f, = g—‘;




7.1 Geometrical properties of the gradient vector V in the plane

If f is differentiable at the point (a,b) and Vf # ﬁ, then the following holds:
Vi(a,b):

« is perpendicular to the contour line of f through (a,b)

e points in the direction of the maximum rate of change f
The length |[Vf(a,b)| of the gradient vector is:

e the maximum rate of change f at this point

e large when the contour lines are close together

e small when the contour lines are far apart

7.2 Gradient of a function of three variables

The gradient of a function w = f(x,y, 2) is defined by:

fa
grad f =Vf = foes + fye, + .62 = | fy
f2

_of . _9of _9f

where f, = 9’ fy = a3y and f, = 92

7.3 Second-order partial derivatives of z = f(z,y)

A function z = f(x, y) has two first-order partial derivatives, f; and f,, and four second-order partial derivatives:

32
2
2. ai;y = fya(z,y) = (fy)a(@,9),
62
3 gyom = @ w) = Uahy(@y)
0%z
4. 67y2 = f’yy(may) = (fy)y(x7y)

0? o (0
Usually, parenthesis are omitted, writing directly fs, instead of (f3),, and T2 instead of — (22,
: Oyox Oy \ Oz

7.4 Equality of mixed partial derivatives (Schwarz’s Theorem)

If fy, and fy, are continuous at a point (a,b) inside the domain, then:

faﬁy(aab) = fyw(aab) ‘




8 Directional derivatives in the plane

8.1 Directional derivative of f at P(a,b) in the direction of i

0
If e, = U = uie, + uge, is a unit vector |ju|| = 1, we define the directional derivative aﬁf = f= by

0 hui, b+ h _ b
%(a,b) :fﬁ(a,b) :}IL% f(a+ U1 +h ’U,Q) f(a )

8.2 Gradient and directional derivative

If f is differentiable and ai = ulaz. + uze—y> is the unit vector in the direction of 7, then:

O (@b) = F(0) = ol bus + fy(a,buz = Vf(a,b) - &

9 Ceritical points

9.1 Discriminant

Let (z9,yo) be a critical point. Furthermore, let

D(x0,y0) = foa(To,y0) fyy(To,y0) — (fxy(xo,yo))2

Then the following holds:
e If D> 0and fy; > 0, then f has a local minimum at (xg, yo)
e If D>0and f, <0, then f has a local maximum at (xo,yo)
o If D <0, then f has a saddle point at (xq, yo)

e If D =0, no conclusion can be made

10 Constraints and Lagrange Multipliers

10.1 Lagrange multiplier \

The scalar A measures how sensitive the optimal value of f is with respect to small changes in the constraint
level ¢. Formally,

A Oc

where f* denotes the optimal value of f. A positive X indicates that relaxing the constraint (¢ larger) increases
the optimal value of f.

10.2 Graphical representation

The optimization of f(z,y) under the constraint g(z,y) = ¢ can be visualized as searching for points where a
level curve of f is tangent to the constraint curve. At an optimum, the gradients are parallel:

|Vf(@,y) = AVg(r.y)|




10.3 Lagrange function £

When optimizing f(z,y) under the constraint g(x,y) = ¢, the Lagrange function is used:

L@y, = flz,y) = Mg(@,y) - o) |

The partial derivatives must be calculated:

o _of 9
ox Oz ox
oL _of 9
oy oy oy
oL

= —(g(z,y) —¢)

The stationary points of £ satisfy:

oL

o, =0
oL
8—y_0
g(z,y) =c

Solutions (x,y, ) of this system give the candidate extrema of f under the constraint g(z,y) = c.



Part 111

Integration of functions with multiple variables

11 Domain of integration (2

Let f:Q C R?> — R. The set Q is a region in the zy-plane over which the double integral

/ f(z,y) dz dy
Q

is taken.

12 Double integrals as iterated integrals

If the region R is a rectangle with a < x < b and ¢ < y < d and if f is continuous in the region R, then the
integral of f over R is equal to the iterated integral

ZfdA:

The iterated integrals can also be written as

b

/d [t dsdy

y=czr=a

d b
/ / fa, ) do dy

12.1 Double integral over rectangles

d b

/f(x,wdA://f(x,wdxdy:/b/dﬂx,y)dydx
R c a a c¢

12.2 Triangular regions

For the triangle with vertices (0,0), (1,0), (0,1) = 0<y<1,0<z<1-y:

1 1—y

/ /f(xyy)dxdy

y=02x=0

Equivalently 0 <z <1, 0 <y <1 —ua:

10



12.3 Double integral over general regions

If the region €2 is not a rectangle, one must describe it using variable limits that follow the boundary of 2

12.3.1 z-simple region

If the region Q = {(z,y) | a <z < b, p1(x) <y < @a(z)}, then

b p2(x)

| [ tewiyis
-

)

@

12.3.2 y-simple region
If the region Q = {(z,y) | ¢ <y < d, ¥1(y) <z < )2(y)}, then

d ¥2(y)

/ / f(z,y) dxdy

12.4 Double integrals in Polar coordiates
12.4.1 Polar coordinates

Polar coordinates are defined as the coordinate change

f:(0,+00) x (—m, 7] = R*\ {(z,0) e R? | z < 0}

given by

‘f(r,gp) = (rcosgo,rsingo)‘

12.4.2 Integration formula

To compute an integral in polar coordinates:

T = TCOoS P,
y =rsingp,
22 +y2 — 2

and

‘dA:rdgodr and dA:rdrdcp‘

13 Triple integrals as iterated integrals

If the region V is a box with a <z < b, ¢ <y <d, and p < z < g and if f is continuous in the region V', then
the integral of f over V is equal to the iterated integral

d b

Vlfdvt///f(z,y,z)dxdydz

p c a




13.1 Triple integrals in Cylindrical coordinates
13.1.1 Cylindrical coordinates

Cylindrical coordinates are defined as the coordinate change

f1(0,+00) x (—m, 7] x R = R*\ {(z,0,2) e R* | z <0}

given by

’f(r,go,z) = (rcosgo,rsingp,z)‘

13.1.2 Integration formula

Each point (z,y, z) in a 3D space is represented by 0 < r < 0o, —7 < ¢ < 7, and —o0 < z < co. The following
relations hold:

T =T7Cosp
y=rsing
z2=2z

22 +y? =12

and

dV =r dr de dz

13.2 Changing the Order of Integration

To change the order of integration (e.g., swapping dy dx to dz dy), one must redefine the boundaries of the
region . This involves switching from a y-simple description to an z-simple description (or vice versa).

Method:
1. Sketch the region 2 based on the original limits.
2. Identify the boundary curves and rewrite their equations (e.g., convert y = g(z) to x = g~ 1(y)).
3. Determine the new constant limits for the new outer variable.
4. Determine the new variable limits for the new inner variable.

Example: Consider the integral over the region bounded by y = 22, £ = 0, and y = 1:

[ [t ay i

To change the order to dz dy:
e The boundary y = z? becomes = = VY-
e The outer variable y ranges from 0 to 1.

 For a fixed y, x ranges from 0 to /y.

L Vi
/ f(z,y) de dy
0 0

12
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