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SW 1: Introduction

Model's three properties

« Mapping: models act as a representation of natural or
artificial originals and can be models in turn;

* Reduction: models function as abstraction. They do
not capture every attribute of the original; instead, they
isolate and retain only those attributes relevant to the
specific objective, intentionally omitting detail to man-
age complexity and focus on the problem at hand;

« Pragmatic: models function as utilitarian substitutes.
They do not replace the original universally but serve
as a representative for a specific user (subject), within
a defined time frame, and for a particular purpose or
operation.

Example

AN
™

+ Generaliz.: point mass sliding down an inclined plane;

« Mapping: box as mass, conveyor slope as an angle 6,
vertical drop as height &, gravity;

* Reduction: no structure flexibility, no air movement,
no friction, no rollers — flat plane;

+ Pragmatic: it allows a, v, ¢ of the box to be calculated,
it enables the prediction of how to build a belt mockup.

Digital representation
——————————— » Manual Data Flow (Offline)
——» Automatic Data Flow (Real-time)

Digital model (simulation)
No direct connection between digital and physical object:

=" Physical [*~-.
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ex: FeM analysis

Digital shadow
Unidirectional, automated data flow from physical object
to digital model:
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Digital twin
Automated data exchange between physical object and
model:

f" Phg sical [“¥, « Tea@ic
* ﬁﬁ@
Dl Rl &

ex: Gco%\e Ho?s
Role of time

Stationary behavior
Steady-state operation: m, = m,,
Dynamic behavior

. . d
Non stationary/transient/unsteady: d—T = Mgy — My,

Governing dynamics

Empirical (black box)

Data based, without direct physics
link. (ex: machine learning, fitting of
functions)

Physics-based (white box)

Based on physical laws.

(ex: conservation of mass)

Grey-bhox (hybrid)

Combining physics and data
parameters.

Role of space

Point model (0D)

Assumes the whole system is perfectly mixed. (ex: ideal
mixer with isotropic distribution). Software: Excel, MAT-
LAB
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Linked point
Connects several simple models together to create a ba-
sic network or layout. (ex: space shown via linking of OD-
models). Software: Simulink, Modelica
Spatial model (1-3D)
Considers real position of state variables or entities; spa-
tial relationships affect the dynamics. (ex: real mixer
with anisotropic, heterogeneous distribution). Software:
COMSOL, ANSYS, AutoCAD, REVIT
Example with a heat pump

* Purpose: digital shadow — automated data;

* Governing dynamics: physics-based — based on
thermodyn. laws;

+ Time: time dependent, dynamic behavior — heating
load, power of the hp, on/off cycles;

+ Space: linked point — el. inputs, thermal
energy exchange, 4 components to monitor.

Solvability of models

Analytical
Closed formula as solution. Only for simple problems.
z3 2 8
B ?‘o "3
Numerical

Numerical approximation. For complex problems.

A" fla)de ~ 2.6667
i=1
Further modelling properties
Linear vs Non-linear

Linear Non-Linear

Continuity vs Differentiability

—_—
|

Cont/Non-Diff Differentiable

-,

Stochastic

Non-Cont

Deterministic vs Stochastic

-

Deterministic
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Modelling approaches

Top-down

Largest components broken down into smaller. ex: mar-
ble block sculpture, railway network.

(#) Efficient model, @ Misses details

Bottom-up

Individual components combined into larger. ex: LEGO
model, human body.

(+) Detailed model, & Complex

SW2: How to model a system

1. Problem formulation

2. Mathematical representation

3. Mathematical analysis

4. Interpretation and evaluation of results

Problem formulation

Task 1 - Defining goals

What do we want to achieve?

How well/closely does our model need to represent real-
ity?

What could be the goals for this specific system?

Task 2 - Characterize the system

What are the relevant parameters and variables of the
system?

What are the system boundaries?

What are the inputs and outputs of the system?

Task 3 - Simplify and idealize the system

Still reproduce the significant behaviors of the system,
while reducing complexity.

Reduce model to the main parameters and variables (ex.
for hp: COP? Max. power? Avg power? Yearly values?
Temperature levels?).

Mathematical formulation

Task 1 - Identify fundamental theories and laws

If no laws are available, use ad-hoc or empirical data to
derive relationships:

Thermodynamic laws, material properties, ad-hoc

Task 2 - Derivation of relationships

Transfer system into a mathematical formulation.
Top-down (black/grey box): Use generic relationship,
data from measurement to determine parameters. For
more complex systems, add more parameters. Use tech-
niques such as machine learning.

Bottom-up: Detailed physical modelling of the device.
Physical laws to describe each component. Exact geom-
etry, material properties, boundary conditions.

Task 3 - Reduce to standard mathematical problem
Simple algebra, linear programming, differential equa-
tion, diffusion problem, wave propagation, FEM prob-
lem, using suitable methods and software/programming
tools.

Interpretation and evaluation of the results

Task 1 - Calibration of results

Use existing data to calibrate the model.

Task 2 - Validation

Check underlying physics law, such as energy or mass
conservation, compare to known solutions, look at ex-
treme cases, compare to measured data.

— What is it and why do we have to do it?

Before the modelling:
What do we model how?:

a) Aims: does the model describe the process under
test?

b) Output: does the model provide the required output
to describe the process?

c) Type: is the type of the model suitable to describe the
process?

During modelling:
Can we reproduce the measurements?
Does the model behave like to system under study?

d) Fitting data: does the model reproduce the fitting
data? How to measure accuracy?

e) Reproducing novel data: does the model also predict
novel measurement data correctly?

f) Sensitivity analysis: does the model predict the be-
havior of the system correctly when system parame-
ters are changed?

After modelling:
Does the model also work with new data?

g) System potentially changed.
h) Differences in system behavior is only manifest in
new experiments.

Systems Modelling Cheat Sheet

SW 3: Data-based modelling

Linear regression

Used to find a linear function y = f(z) = a + bz that best
fits a dataset (z;, ;).

Least squares method

Minimize the sum of squared errors (SSE):

S = Zyl a+bx;) )

If measurement uncertalntles Ay; exist, weight the error:

Yi

Optimal parameter formulas
Finding a and b when S is minimal:

os _, . 9S _,
da ' Ob
Slope b:
b— Z TiYi — T(Z )(Z yv)
Yt -k (@)
Intercept a:
a=7y—bx
where:
T Zz T4 : g _ Zi Yi
n n

Quality of fit (R?)
The coefficient of determination R? indicates the per-
centage of variation explained by the model:
—\2
2 2i @) —9)
Zi (yi — 5)2
« R? =1 (100%): the model explains all data;
* R? =0 (0%): the model doesn't (random).
Multilinear regression
Used when the target depends on multiple variables:
y(x1, ..., xn) =a+ bz + ...+ bpxy, :a—|—ijmj
j=1
Non-linear regression
The goal is to fit data using non-linear functions when
the underlying process is not linear.
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Linearization techniques

Function | Equation Trasformation Variables
Exp y = aeb® Iny =Ina+ bz zvsiny
Power y = ab® Iny=Ina+zInd | zvsiny
a 1 =z 1
Inverse Y= — - = - T VS —
& Y a Y
S
e ly=awtb |y=a@)+h | Pvsy
Root /
ngic y=+Var3+b | y>=az3+b 3 vs y?

Maximum likelihood method (MLE)

Determines the parameters of a probability distribution
that best describes a dataset, independent of histogram
binning.

Likelihood function

Defines as the product of probability densities for all data
points:

Lio,p) = Hf(xi,mu)

Log-likelihood
To simplify calculation and avoid small numbers, mini-
mize the negative logarithm:

—logL = — Z log(f (i, 0,1))

Common distribution
Normal distribution:

f(z) =

1 /x—p 2
exp (_2( = ))
Weibull distribution (Reliability):

Ne(O\z)E—1 —(Az)*
fla) = (Ax)*te , >0
0 else

ovV2rm

Weibull cumulative distribution function
7 _ ()
ﬂm=/ﬂww=% ‘

forz >0
else

SW4: Modelling with ODEs

Fundamentals of ODEs

An ODE contains functions of one independent variable
and their derivatives.
Ordinary (ODE)
Involves one independent variable:

d*z B

a2 -9
Partial (PDE)
Involves multiple independent variables:

Pu S dPu
a2~ ¢ da?

Analytical solution method
Separation of variables
Used when terms involving y and = can be moved to op-
posite sides.
Variation of parameters
Used for inhomogeneous linear ODEs. General solution
is the sum of the homogeneous solution and a particular
solution.
Numerical solution methods
Euler method

A simple iterative method to approximate ODEs defined

as % = g(x).

The approximation uses the finite difference slope:
df ~ f(@o + Az) — f(z0)
dx Ax

Iterative steps:
f(xo + Az) = f(z0) + g(z0)Ax
Modelling principles

Balance equations
Based on the conservation principle:

d
I () = f(ta) = £(t.)
Example in a capacitor
Q dQ | Q

Uo=Ur+Uc=Up=RI+ 5 =R+ &
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Mechanics and forces
Equation of motion is derived from Newton’s second law
Fet = ma.
Example of a falling drop with drag
mo =mg —bv = v(t) = % (1 — e_bt/m)
Growth and decay
Describes processes where a quantity increases or de-

creases over time.

N
ddT = kN = N(t) = Nye*!

with half-time / doubling factor 7:

_|in2
|k
Example of logistic growth
dN K L
— =KN(t)— —=N?= N(t) =
o (1) = TN* = N(1)

1+ (NLO — 1) ekt

Recipe to derive the equation of motion

1. Make a sketch of the situation;

2. Define the coordinate system and select variables of
interest;

3. Identify all forces and momenta;

4. Formulate the equation of motion;

5. Solve it.

Linear algebra and systems of ODEs

Matrix representation

System of equations:

a1171 + a12w2 + 41323 = by

a2171 + agaT2 + a23T3 = bo

a3171 + azawa + azzrsz = b3
Matrix form (Axz = b):

ai; a2 a3 T by

a21 a22 a23 22 | = | b2

as1 azz as3 3 b3
1 1
Ifx = T2 ,theni‘: To
z3 Z3
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Inversion and diagonalization
Inverse matrix R—!: R- R~! = I (Identity matrix).

I =

o O =
o = O
—_ O O

Diagonalization: Special matrices can be rewritten as:

A 0 0
A=10 X O
0 0 X3

This transforms the matrix into a diagonal matrix con-
taining eigenvalues \.

Why is it called linear algebra

Linearization:

Complex, non-linear functions can be approximated by
linear functions in a small neighborhood of a point a:

f@) = f(a) + f'(a)(z — a)
Benefit of solving ODEs
If A were a number, & = Az would solve to z(t) = ke??.

Since A is a matrix, if we diagonalize it using eigenvalues
A, the solution becomes a mixture of exponentials:

kpett 0 0
zt)=R7'| 0 ke’ 0 |R
0 0 ksetst

Solvability of linear systems

Geometric interpretation:

Solving Az = b is finding the intersenction of
lines/planes.

+ Case 1, consistent: lines intersect at exactly one point;

« Case 2, inconsistent: lines are parallel and distinct,
there is no solution;

+ Case 3, infinite solutions: lines are identical and over-
lap completely.

Determinant

A scalar value derived from a square matrix that tells us

if it is invertible. If det A = 0, the matrix is not invertible.

2x2 formula: For A = [¢}], det A = ad — bc.

3x3 formula: For A = [3 % Jc‘]
g 1

d d
det A = ai det |:Z {:| — 12 det |:g J;:| + a3 det |:g Z:l

n
detA =) ay;C1j, Clj=(-1)" detA;
J

Cofactors
The Eigenvalue problem

For a square nxn matrix A, we look for a Eigenvector z
and a Eigenvalues a such that:

Az =)z
Calculation method:
1. Solve the characteristic equation det(A — \I) =0

2. Thisresultin an n-th order polynomial (a1 A" +... = 0)
3. The roots of this polynomial are the Eigenvalues.

SW5-10: Modelica

Equation-based modelling

Describes a system by using physical relationships.
Problem definition - Double layer wall

A wall consists of two layers with different thermal con-
ductance values G; and Gs.

We consider two steady-state cases:

1. A heat flow @, passes througs the wall and the right
temperature is T». The interface temperature T; and
the left temperature T are unknown.

2. Both boundary temperatures T} and T; are given and
the interface temperature T; and the heat flow Q are
unknown.

Heat FlOW Heat Flow
Temperature Temperature

Layerl Layer2

Formulas
Heat conduction equation [W]:

Q=GAT =G (T, —T,) =G (T) - T;) = Go (T; — T3)
Thermal conductance [W/K]:
A
G = f)‘

Conservation of energy:
Q=Q=Q
Component-based modelling

Instead of rewriting equations each time, an instance of
the needed physics law component is added.

Systems Modelling Cheat Sheet

Thermal components
thermalConductor
Models heat linear heat flow between two ports

/% determined by a constant thermal conductance
G

0=cm-1) : Q="

fixedHeatFlow
A source that injects a constant heat flow into
the connected component

port.Q) = _Qcomponent
fixedTemperature
Defines a constant temperature boundary con-
dition (acting like an infinite heat reservoir).

%

N

N

port. T = Tharameter
heatCapacitor

Thermal mass that stores energy, where tem-
perature changes based on heat flow and heat
capacity C.

I

convection
A= Modelsthe heattransfer between a solid surface
and a moving fluid based on a convection coef-
ficient Geony.

Q =a-A-AT = Geonv - (Tsolid — Tuid)
temperatureSensor
Measures the absolute temperature at the ther-
mal port and outputs that value as a real signal.

Q=0

_—

Yy = Tport 5

Electrical components

resistor

Resists the flow of electric current, creating a

voltage drop proportional to the current.

U=R-1 ; Q=P=U-1I

constantVoltage

An ideal voltage source that maintains a con-

«'( = stant voltage difference between its prositive
~ and negative pins.

Uport = Uconst

ground
Defines the reference potential (zero voltage) for
an electric circuit.

.

Uport = 0
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Signal components
pulse
Generates a signal that alternates between two
values (amplitude and offset) with a defined pe-
» riod and pulse width.

offset + ampl., if € pulse width

Y offset, otherwise
constant
A signal source that outputs a fixed numerical
| value.
. y = k
gain

A signal block that multiplies the input signal «

> - by a constant parameter k to produce the output
signal y.
y=ku
onOffController
A logical controller that switches its output be-
»uwe tween true and false based on comparing a
X \x measured signal « to a reference value.

true if u < (reference — bandswitch)
false if u > (reference — bandswitch)
booleanToReal
Converts a Boolean signal into a Real float num-
, B ber
_ y {reaITrue

y:

if input is True

realFalse if inputis False

Dynamic systems

Two things can lead to time-varying behavior:

1. Transient boundary conditions

2. A dynamic system starting from a non-eq. state
First-order thermal model

A mass is heated by a constant source while simultane-
ously losing heat to a cooler environment

heatCapacitor

10074200

fixedTemperature

7

°c

thermalConductor

G=1.2516

fixedHeatFlow

— 3k

Q_flow=1 kW

N

&Y
S N\

A

Conservation of energy at the central node:
dar

C'E :Qin_G<T_Tsink)

Multi-domain modelling

Multi-domain model

Allows representing different physical domains such as
electrical, mechanical, thermodynamic, and fluid dynam-
ics in a single model.

heatCapacitor

01JK

fixedTemperature

1 B

G=1 WK d
R=> O =20 'C

resistor

Resistor heat interacts with the thermal system
Cyber-physical model
A model combining physical domains with a software.

[N 5
A

signalVoltage
pulse ‘r

period=0.1 s

One-dimensional model

Simulation technique used to calculate spatial distribu-
tion by discretizing a continuous object into multiple dis-
crete, lumped segments.

About Modelica

Definition and structure

Open source, equation-based, non-casual language for
modelling dynamic behavior of multidisciplinary sys-
tems. Component-based (graphical connection), object
oriented (inheritance), and hierarchical.

Equation-based / non-casual modelling

+ Component diagram: topological (physical) structure;
+ Equation-based: no fixed input/output direction;

+ Connections: represent physical wiring/piping;

* Pros: reusable, multi-domain, closer to physics.
Casual modelling

* Block diagram: represents computational data flow;

+ Assignment-based: fixed input/output;

» Connections: represent signal flow variables;

+ Cons: prone to errors when modifying structure.

ground

5

Systems Modelling Cheat Sheet

Hierarchical structure
Components are built from connected subcomponents
and/or equations, allowing complex systems to be bro-
ken down into reusable parts.
Object-oriented
Allows creating general base definitions (superclasses)
that specific components extend, rather than defining
every component from scratch.
Physical mapping
Icons represent physical components, connections rep-
resent actual physical couplings.
Application examples
« Multiphase flow: refrigeration systems;
* Multi-domain: Pneumatic piston pump;
+ Compressible media: Medical pulse wave analysis.
Examples wrap-up
Thermal circuit
dE _dU
ar —dr "

iyl § Ao°C
0% 3 Ea C 4o
TN N7

Heaten up rod

© ©
NaeNeeNmaN\enil

dT .
CE—Q

Heat flow

E}§@§|

Physical units

Heat flow Q (W] Heat capacity le} [J/K]
Thermal conductivity X [W/mK] Thermal conductance G [W/K]
Specific heat capacity ¢, [J/kgK] Convection coefficient o« [W/m?K]

SW11: Model and control energy systems

Energy system model

Model dynamics of energy systems to study consump-
tion peaks, self-sufficiency and storage sizing, planning.
How to build an energy system model

Single building

Component list + properties; hydraulic connections; us-
age profiles; pricing information.
Quarter/community/city

Single-building info for ALL buildings + grid/connection
properties + control scheme (balance demand/supply).
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Main challenges in energy system modelling
Acquiring

Layout, parameters, installed-component details,
control-system detailsm shading/clouds, usage profiles.
Modelling

Reliable component behavior and coupling, environ-
ment interaction (solar/shading/clouds, wind shielding,
contributions from neighboring buildings).

Models availability

Software frameworks

Built-in, pre-made models for specific component types.
Simplified models

Basic blackbox representation:

input output
Literature

Models taken from published research and publications.

Data-science models

Models learned or fitted from data.

White-/Grey-/Black-box models

* White box: theory-based, parameters from measure-
ment or ab initio calculations;

« Grey-box: simplified theory, parameters estimated
from data;

+ Black-box: fit a model and parameters (data-based).

White-box

Each white-box model is a digital twin, but not all digital
twins are white-box models.

Digital twin

Virtual representation that serves as the real-time digital
counterpart of a physical object or process:

+ Detailed: detailed, ab initio / measured parameters;
+ Simplified: key mechanisms, simple assumptions;

* Numerical: fitting data, parameters are fitted.

Heat pump modelling example (white to gray box)
Evaporator and condenser cycles, refrigerant dynamics,
expansion valve control algorithm. COP dependence, in-
terpolate experimental data with non-linear regression.

Grey-box example (1st order building / RC idea)

. g-1(®)

—H - (Troom — Tambient)

dT; . :
C Crlotom =Qrs + Qint + 9 I(t) — H (Troom — Tambient)

Black-box example (wind turbine power curve)

2000

1500

Power [kW]
]
8
8

=
3

o

0 2 4

P(w)

6 8 10 14
Wind speed [m/s]

1y exp(—b- (w—s))

Control schemes overview
Control events = CE;

Control decisions = CD;
Control signal = CS.

* Rule-based: CE are chosen based on a rule-set;

* Model-based: predict the future behavior based on a
model and decide such that the model performs best;

* Neuronal network-based: trains a neuronal network
to take CD and act accordingly;

*+ A posteriori optimisation-based: takes historic data
and optimise CD.

Rule-based

Fixed time plan controllers

CE are chosen based on a fixed time schedule.

Model predictive controllers

CE are chosen based on model prediction of system dy-

namics.

Set point controllers

CE is triggered if the target quantity

is leaving the set point corridor. Ex:

ON |f Troom < 19500
OFF if Tyoom > 20.5°C
6

Target quantity

Time

Systems Modelling Cheat Sheet

Feedback based controllers -P &I & D

CE are initiated based on the interaction with the con-
trolled quantity. We have P, PI, PID controllers.

A PID-type controller computes the actuator command
u(t) from the error e(t) = r(t)t —y(¥)

u(t) = Kpe(t)+ K; / e(r)dr + Kp%e(t)
N—— %O,_/ ——
P ! D
* P: reacts immediately to error:
Bigger Kp — faster response, but can overshoot /
oscillate and typically leaves a steady-state error;
+ Integral: accumulates error over time:
Removes steady-state error (drives output to the set-
point), but makes the response slower and can in-
crease overshoot and “windup” if not handled.
+ Derivative: reacts to how fast the error is changing:
reduces overshoot and improves settling, but is sensi-
tive to measurement noise.

Graphical representation
14

1,2

1,0

: PD
08 |lf

06 |/
04

0.2

0,0

0,0 05 1,0 15 20 25 3,0 35 40 45 5,0

The plot shows the closed-loop step response over time
of the same plant controlled with different controllers
with setpoint at 1.

* P:rises quickly but settles below 1 — steady-state error
remains;

« I rises very slowly but eventually reaches (and may
slightly exceed) 1 — zero steady-state error, poor
speed;

« PD: faster than P and with less overshoot / better
damping, but still can have steady-state error;

* PI: reaches 1 but shows overshoot and slower settling;

+ PID: fast rise, small overshoot, good settling, and zero
steady-state error.
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SW12: Design and analysis of experiments

Design of experiments (DoE): systematics sweep of pa-

rameter space when no fully-analytical optimum is avail-

able. Build an empirical model y = F(z) from sampled

runs and use it for optimisation.

Setup of simulation study

Aim: what do you want to archieve?

+ control optimisation for given energy

« retrofitting of existing energy system by adding or re-
placing technologies

+ design of novel energy system

Quantification: choose KPI / cost function.

+ total energy consumption

+ cost for energy provision

+ share/amount of renewable energy

Decision variables: which variable can be influenced.

* Ex: size, orientation, capacity, ...

Measure of success: optimal configuration with re-

spect to the KPL

* Ex: among all system configuration we find the solu-
tion with highest share of renewable energy

Coarse workflow

1. Calculate total / monthly energy demand;

2. Calculate production for different sizes of the system;

3. Calculate share of renewable energy;

4. Pck optimum solution

Challenges: energy demand has to be fulfilled in each

time point unless large storage system is considered.

Storage capacity of battery often heavily overestimated.

Detailed workflow

1. Setup system simulation;

2. Select different system sizes;

3. Run simulation measuring total and renewable en-

ergy consumption and calculate share of renewables;

4. Visualise the results;

5. Pick optimum solution.

Challenges: requires detailed knowledge about the

building and the demand profiles, variable values for the

system size is typically selected at random.

Visualisation of results

+ Display the sare of renewable energy versus systems
size;

+ Select for the system size the optimum value and plot
the two graphs.

How to model a system (SW2)
Task 1 - Defining goarls
What do we want to archieve? — Aim
Task 2 - Characterize the system
What are the relevant parameters and variables of the
system? — Variables / KPIs
Situation analysis
+ System boundaries:
- Depend on the question that needs answering;
- Should include all parts with strong back-reaction;
* Structure of the system under consideration;
+ Characterization of the influencing environment;
* Interpretation of actual state (SWOT);
+ List of general restrictions / conditions;
* Summary of problem definition.
Impact of system parameters
Problem framing & sources of parameter influence
* What is the problem?: Example:
exernal / non-controllable parameters may change the
optimal solution sustainability;
* Where do these effects come from? Example:
thermal energy storage integration in residential heat-
ing system with PV system and heat pump;
* Where is the parameter effect? Example:
depending on utility or collaboration model, the com-
pensation for PV injection is different.
Pitfalls of visualisation approach
Parameters may have:
+ co-dependencies;
+ exclusive effect (one counteracts the second);
+ infinitely many solutions.
Design of experiment (DoE)
Why do we need to design an experiment?
Analytical models are rare; optimisation typically involves
many options and parameter ranges.
Impact of variability on DoE
Factor values and execution of experiments may have a
major effect on results.

y / y

Ny ®

linear
model A

non-linear
model

well determined

- ~— — g linear model
/ ll-positio o
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Typical steps of a DoE

1. Discovery
— determine what happens when factors are changed by exploring the new system

2. Screening (not complicated, extremely important when a process/technology is new, usually
requires few experiments)
— uncover the most influential factors affecting the process/product
— determine in which ranges the factors should be investigated

EARLY STAGES

3. Optimisation (complex task, requires much effort)
— determine a model to predict the response from all the possible combinations of factors
— define which combination of the factors will result in optimal products/operating conditions

4. Confirmation (could be extremely useful in scale-up)
— verify that the system operates/behaves in a consistent way with respect to theories/
past experience

CONSOLIDATION

5. Robustness testing (last tests before the product/method release)
— determine the sensitivity of a product/process to small changes in the factors settings
(fluctuation occurring in a «bed day»)
— ascertain that the process/system is robust to small fluctuations

Basic principles of DoE

- Randomization
— both the of the experi material and the order of the individual runs of the
experiment are to be performed at random
- statistical methods require that the observations (or errors) are independently distributed random variables
- “averaging out” the effects of extraneous factors
Replication
- making independent repeated runs of each factor combination - allows determining experimental error
— replication is not repetition
- repeated measurements reflect the inherent variability of the measurement system or gauge
- replications reflect variability sources both within and between runs
— Blocking
— separate experimental runs based on nuisance factors - reduces/eliminates variability from nuisance factors
— one block is a set of relatively homogeneous experimental conditions

Comment on factor selection

Types of factors:

- design factors: selected for the study

- nuisance factors: they must be accounted for because they exert a large effect on the response

Classification of factors:

- controllable: its levels can be set by the experimenter > blocking can deal variability

— uncontrollable: cannot be manipulated, but can be measured - analysis of covariance is used to compensate
this effect (e.g. environmental humidity)

— noise: natural and uncontrollable fluctuation that is not systematic
- robustness studies usually minimise the noise effects

— held-constant factors: despite exerting some effects on the response, they are kept constant

— allowed-to-vary factors: factors that are applied in a nonhomogeneous fashion (e.g.: differences among
processing units, effects of materials, etc...)

Choice of experimental design model
Empirical model. First-order polynomial:

y*ﬁO+ZBzxz+€

i—1
X's are design factors, y's are responses, 3; are parame-
ters to be estimates, main effects are evaluated.
First-order with interactionS'

y—BO‘FZﬂzlﬁ"’Z Z ﬂﬂxz T;+ €
=1 j=1=1
Second-order model: Adequate for optimisation.
Yy = 50 + Zﬂlxl + Z Z szl'z € +Zﬁux +e€
i=1 j=i=1

Regression model: data collected from experiments
used for finding 3, which are used in turn to estimate the
response variable gnew for new combination var. znew



Matteo Frongillo

Full factor design

Used in experiments involving several factors and per-

form experiments on all possible combinations of the lev-

els of all the factors. When Levels are considered for K

variables, the total Number of experiments: N = LX

SW13: Optimisation - Linear programming

Linear programming (LP)

Definition

Linear programming is an optimization technique for

problems with linear cost function zop; = max (a”z)

under the side conditions given by linear (in)equations
21 <10, z1+22 23, 21+ 22+ T3 =5

Why is LP relevant?

Energy system operation schedules, energy saving po-

tential by novel technologies, trading applications, rout-

ing of cars, busses, goods in a process.

Prerequisites

Linear and single cost function to optimize, linear con-

straints, continuous variables.

Controller vs Linear programming

Controller

Decides based on current, historic, or predicted data.

Linear programming application

The optimum solution for a full period is investigated as-

suming perfect knowledge of the past, present, and fu-

ture.

Graphical solution of linear programs

Solving more complex systems

1. Identify the area of permitted variable combinations:

2. Find lines of constant cost function;

3. Optimize the cost function.

3. Maximum
position

1.2 1. Minimum ’\|
osition \
0.5 0.5
N\
0.5% 1.5 A

0.5 1.5
Optimisation of a national energy system
. Variables, cost function and boundary conditions;
. Energy system simulation;
. System design + challenges;
. Model setup;
. Simulation results and optimized energy flows.

GupbhwWN-=

The simplex algorithm

Real-world LP problems involve very large numbers of
variables and constraints, making graphical methods im-
practical. The simplex algorithm efficiently solves such
problems by moving along the edges of the feasible re-
gion, each time selecting the direction that most im-
proves the cost function, until no further improvements
is possible.

SW14: Mixed-integer (MILP) and NLP
LP vs MILP vs NLP

Linear Programming (LP)
In LP, one assumes that the variables are continuous:

z; €R
Mixed-Integer Linear Programming (MILP)
In reality, variables can only be integers:
w; = LZL’ZJ, w; € 7

0-5“ ¢
—{ Optimal solution

Non-Linear Programming (NLP)
Non-linear programming is an optimization technique
for problem with non-linear cost function zopr =
max(f(z)) under the side conditions given by the non-
linear (in)equations

1 <10, 21 + a2 > 3, 1:%—!—1:% <10
Note that either the function or the constraints or both
can be non-linear

Systems Modelling Cheat Sheet

Non-Linear Programming optimization

Application

NLP is used where the cost function and/or the con-

straints are non-linear, such as:

+ Capital cost of devices like power plants;

* Optimizing a solar PV installation and using the inclina-
tion and orientation of the panels as variables;

+ Optimization of wind turbine power output, depending
on the height or radius of the generator.

2 aw) b aw

Area | Area Il Area lll Area IV
—00

Initial state

vE vF v
Line with slope 5% . Basin of attraction
Lagrange multipliers
If we have a function
f(xla"'vxn)
and a boundary condition
g(x1,...,2n) =0

then we can define a new function:
ﬁ(xlw"axna)‘) = f(xlw"axn) +>‘g(xla7xn)

The optimized variables are given by the sistem of equa-

tions:
oL of N g

ory  ory  om,
oL af g
873?278372 >\8$270
oL
ﬁ—g(xl,...,xn)—o

Additions

A system is the mix of elements that interact together.

A model is a generalized abstraction of reality.

Systems modelling is the abstract and generalized way
of show the interaction between elements.
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