

Mathematics 1A Tutoring session

Semester Week 5

Matteo Frongillo

Last update: October 13, 2025

Exercises

1 Trigonometry

Exercise 1.1:

Find the hypotenuse of a right triangle with adjacent side $b = 36.4$ cm and opposite side $c = 41.8$ cm.

Exercise 1.2:

Solve a right triangle where only the hypotenuse $a = 3$ cm and the angle $\beta = 34,7^\circ$ are known.

Exercise 1.3:

Determine domain and range of the following trigonometric functions:

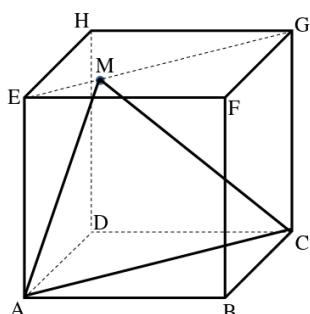
$$\sin(x) \quad ; \quad \cos^{-1}(x) \quad ; \quad \tan(x) \quad ; \quad \arctan(x)$$

Exercise 1.4:

A block of mass $m = 2\text{ kg}$ rests on an inclined plane that forms an angle θ with the horizontal. The gravitational acceleration is $g = 9.81\text{ m s}^{-2}$.

- Express the components of the force parallel and perpendicular to the plane, F_{\parallel} and F_{\perp} , as functions of θ , knowing that $F = mg$.
- Compute F_{\parallel} and F_{\perp} for $\theta = 25^\circ$.
- Find the value of θ for which $F_{\parallel} = \frac{1}{2}F_{\perp}$.
- Determine the length L of the inclined plane knowing that the height is $h = 1.5\text{ m}$ and the horizontal projection is $x = 3.3\text{ m}$.

Exercise 1.5 BONUS:



A cube $ABCDEFGH$ with edge length 8 cm is given.

Point M is defined so that $\overrightarrow{EM} = \frac{2}{5} \overrightarrow{EG}$.

Calculate the measure of the sides and angles of triangle ACM

2 Exponential functions

Exercise 2.1:

Determine the half-life of a radioactive substance X , knowing that after one year its mass has decreased to one third.

Exercise 2.2:

A sample of St-89 (Strontium-89, a radioactive element with $T = 50.5$ days) has lost 2 g of mass after one month. Determine the mass of the same initial sample after one year.

Hint: for decays, $k = -\frac{\ln(2)}{T}$

Exercise 2.3:

Solve in \mathbb{R} without the calculator:

$$\log(x^2) = 3 \quad ; \quad \ln(x+1) = \frac{1}{2} \quad ; \quad \ln(x+1) = 0.001^2 \quad ; \quad \log_2(x^2 - 4x + 4) = 2 \quad ; \quad (x^2 + x - 2) \ln(2x) = 0$$

Exercise 2.4:

A hot object with an initial temperature T_0 , placed at time $t = 0$ in an environment with lower temperature T_1 , cools according to Newton's law of cooling:

$$T = T_1 + (T_0 - T_1) e^{-kt}$$

where T is the temperature of the object at time t , and k is a constant depending on the material of the object.

Consider a steel sphere heated to 133°C and then placed to cool in a room where the air temperature is 22°C . Calculate:

- the temperature of the sphere after 20 minutes, knowing that after 10 minutes it had cooled to 108°C ;
- the time required for the temperature to drop to 66.5°C .

3 Composite functions

Exercise 3.1:

Let $f : \mathbb{R} \rightarrow \mathbb{R}$

$$x \mapsto y = \begin{cases} \frac{1}{2}x + 1, & \text{for } x \geq 4 \\ x - 1, & \text{for } -1 < x < 4 \\ -2x - 4, & \text{for } x \leq -1 \end{cases}$$

Solve:

a. $f(0)$	c. $f\left(\frac{9}{2}\right)$	e. $f(6) - f(-6)$
b. $f(-11)$	d. $f(f\left(-\frac{1}{2}\right))$	f. $f(3f(-1) - 2f(2))$

Exercise 3.2:

Let $f : \mathbb{R} \rightarrow \mathbb{R}$

$$x \mapsto y = \begin{cases} \frac{1}{2}x, & \text{for } x < -2 \\ \frac{2}{3}x + 1, & \text{for } -2 \leq x \leq 2 \\ \frac{x+2}{3}, & \text{for } x > 2 \end{cases}$$

Solve:

a. $f\left(\frac{6}{5}\right)$; b. $f(f(-3))$; c. $2(f(7) - 1)^2$

4 Limits

Exercise 4.1:

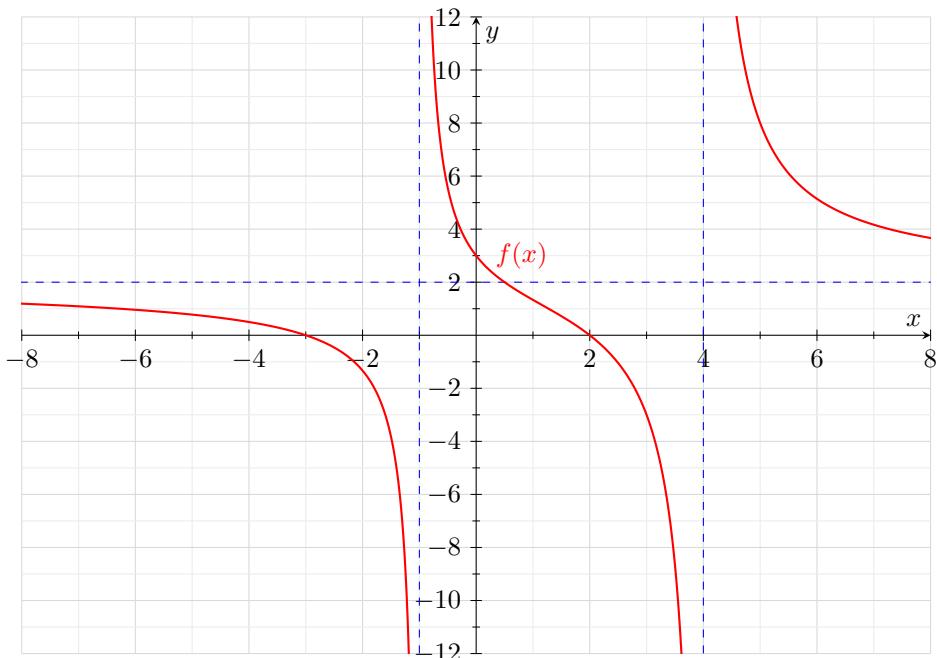
Solve the following limits using the dominant term method:

$$\lim_{x \rightarrow \infty} \frac{(x+1)^2}{x^2+1} ; \lim_{x \rightarrow \infty} \frac{\sin(x)}{x} ; \lim_{x \rightarrow \infty} \frac{1000x}{x^2+1} ; \lim_{x \rightarrow \infty} \frac{x^2-5x+1}{3x+7}$$

$$\lim_{x \rightarrow \infty} \frac{2x^2-x+3}{x^3-8x+5} ; \lim_{x \rightarrow \infty} \frac{(2x+3)^3(3x-2)^2}{x^5+5} ; \lim_{x \rightarrow \infty} \frac{2x^2-3x-4}{\sqrt[3]{x^4+1}}$$

Exercise 4.2:

For each of the following, determine whether the statement is true or false:



a) $\lim_{x \rightarrow \infty} f(x) = 0$, b) $\lim_{x \rightarrow 0} f(x) = 2$, c) $\lim_{x \rightarrow 4^-} f(x) = +\infty$, d) $\lim_{x \rightarrow -1} f(x) = f(-1)$

e) $\lim_{x \rightarrow 0} f(x) = 3$, f) $\lim_{x \rightarrow \infty} f(x) = -1$, g) $f(x) = 0 \iff x \in \{-3, 4\}$

Exercise 4.3 (From Question 4.1, Homeworks Week 4):

Are the following claims true or false? Explain why:

- If a function y of x is not defined at the position $x = x_0$, then $\lim_{x \rightarrow x_0}$ does not exist either
- If $\lim_{x \rightarrow x_0}$ does not exist, then y is also not defined at the point $x = x_0$
- If a function y of x is defined at the position $x = x_0$, then $\lim_{x \rightarrow x_0} y = y|_{x=x_0}$
- If x approaches 1.000.000 from the left, $1/x$ gets closer to the value 0. Therefore, $\lim_{x \rightarrow 1.000.000^-} \frac{1}{x} = 0$
- If y has limit value 5 when x approaches 3 from the left, then y must already assume the value 5 in the range $x < 3$

Quick solutions

Solution 1.1:

$$a = 55.43 \text{ cm}$$

Solution 1.2:

$$b = 1.71 \text{ cm}, c = 2.47 \text{ cm}, \alpha = 55.3^\circ$$

Solution 1.3:

1. $\mathcal{D}_f = \forall x \in \mathbb{R}, \quad Im_f = [-1, 1]$
2. $\mathcal{D}_f = [-1, 1], \quad Im_f = [\pi, 0]$
3. $\mathcal{D}_f = \forall x \in \mathbb{R} \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}, \quad Im_f = [-1, 1]$
4. $\mathcal{D}_f = \forall x \in \mathbb{R}, \quad Im_f = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

Solution 1.4:

- a. $F_{\parallel} = mg \cos(x), \quad F_{\perp} = mg \sin(x)$
- b. $F_{\parallel} = 17.78 \text{ N}, \quad F_{\perp} = 8.29 \text{ N}$
- c. $\theta \approx 1.11 \text{ rad} = 63.4^\circ$
- d. $L = 3.6 \text{ m}$

Solution 1.5:

$$\overrightarrow{AC} = 8\sqrt{2} \text{ cm} \approx 11.3 \text{ cm}$$

$$\overrightarrow{AM} = \frac{8\sqrt{33}}{5} \text{ cm} \approx 9.19 \text{ cm}$$

$$\overrightarrow{MC} = \frac{8\sqrt{43}}{5} \text{ cm} \approx 10.49 \text{ cm}$$

$$\widehat{MAC} : \alpha \approx 60.5^\circ$$

$$\widehat{ACM} : \beta \approx 49.7^\circ$$

$$\widehat{AMC} : \gamma \approx 69.8^\circ$$

Solution 2.1:

Half-time: 0.63 years ≈ 230 days

Solution 2.2:

$$m_0 = 5.93 \text{ g}$$

Solution 2.3:

- a. $x = \pm\sqrt{10^3}$
- b. $x = e^{\frac{1}{2}} - 1$
- c. $x = e^{10^{-6}} - 1 \approx 0$
- d. $x_1 = 0, \quad x_2 = 4$
- e. $x \in \left\{ -2, \frac{1}{2}, 1 \right\}$

Solution 2.4:

- a. $T = 88.63^\circ\text{C}$
- b. $t \approx 35.2 \text{ min}$

Solution 3.1:

- a. $f(0) = 1$
- b. $f(-11) = 18$
- c. $f\left(\frac{9}{2}\right) = \frac{13}{4}$
- d. $f\left(f\left(-\frac{1}{2}\right)\right) = -1$
- e. $f(6) - f(-6) = -4$
- f. $f(3f(-1) - 2f(2)) = 12$

Solution 3.2:

- a. $f\left(\frac{6}{5}\right) = \frac{9}{5}$
- b. $f(f(-3)) = 0$
- c. $2(f(7) - 1)^2 = 8$

Solution 4.1:

- a. $= 1$
- b. $= 0$
- c. $= 0$
- d. $= 0$
- e. $= 72$
- f. $= \infty$

Solution 4.2:

- a. False
- b. False
- c. False
- d. False
- e. True
- f. False
- g. False

Solution 4.3:

All the statements are False