{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIoCAYAAAB6RmObAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5lklEQVR4nO3de3zO9f/H8ce1ayczc9rMbNMcihyniSiZckjMYahQDkkJ5ZAO+n1zSCUVTeXwTUqKDmahkjOhlONKB0oszBBiRnb8/P642vV1bcPOn13b8367Xbft877en8/1uq7r3dXTZ+/r/bEYhmEgIiIiIuKEXMwuQEREREQkvxRmRURERMRpKcyKiIiIiNNSmBURERERp6UwKyIiIiJOS2FWRERERJyWwqyIiIiIOC2FWRERERFxWgqzIiIiIuK0FGZFpEQKDw8nPDw8X/taLBYmTZpUqPWUVgsWLMBisRAXF1eg4xTk/SqotLQ0nnrqKYKDg3FxcaFHjx6m1CEi5lCYFSlCmUHhSrfvvvvO7BJN9csvvzBp0qQCB6n8iIuLc3gv3Nzc8PX1pXXr1jz77LMcPny42GsqCoMGDbri+Fu1alWO+8yePZsFCxZkazfz/bqad999l1dffZXevXvz/vvvM2bMGLNLAmDTpk1YLBaio6NzvH/QoEF4e3tf8ziTJk1yeN+8vLyoWbMmERERvPfeeyQnJ+e7xpUrV+offuL0XM0uQKQseP7556lVq1a29rp165pQTcnxyy+/MHnyZMLDwwkJCXG4b82aNcVSQ9++fbn77rvJyMjg77//ZseOHURFRTFz5kzmz5/PfffdVyx1FCUPDw/eeeedbO1NmzalQ4cO3HfffXh4eNjbZ8+eja+vL4MGDXLoXxLer5xs2LCBwMBAXn/9ddNqKA5z5szB29ub5ORk4uPjWb16NQ8++CBRUVF88cUXBAcH5/mYK1euZNasWQq04tQUZkWKQefOnWnevLnZZTgVd3f3Ynmcm266ifvvv9+h7c8//6Rjx44MHDiQG2+8kaZNmxZLLUXF1dU123O8nNVqLfBjFNf7lZOTJ09SqVKlQjteRkYGKSkpeHp6FtoxC0Pv3r3x9fW1b0+YMIFFixYxYMAA+vTpU+b/0iNll6YZiJQAEydOxMXFhfXr1zu0P/zww7i7u/PDDz8A//uz5SeffMKzzz5L9erVKV++PN26dePIkSPZjrtkyRLCwsIoV64cvr6+3H///cTHxzv0yfxTZ3x8PD169MDb2xs/Pz/GjRtHenq6Q9+MjAyioqJo2LAhnp6e+Pv788gjj/D333879AsJCaFr165s3bqVFi1a4OnpSe3atVm4cKG9z4IFC+jTpw8A7dq1s/8JddOmTUD2OZgpKSlMmDCBsLAwKlasSPny5WnTpg0bN27M24udC9dddx0LFiwgJSWFV155xeG+s2fPMnr0aIKDg/Hw8KBu3bpMmzaNjIwMh34ZGRnMnDmTxo0b4+npiZ+fH3fddRc7d+6093nvvfe44447qFatGh4eHjRo0IA5c+Y4HGfgwIH4+vqSmpqarc6OHTtSr169Aj3XrHNmQ0JC+Pnnn/n666/t70l4eHie36/Msfrpp5/y4osvEhQUhKenJ3feeScHDhzIVsesWbOoXbs25cqVo0WLFmzZsuWa83Azp4ps3LiRn3/+OVtNFy5c4IknnrC/V/Xq1eO1117DMAyH41gsFkaOHMmiRYto2LAhHh4eV5yCkfkade3alTVr1hAaGoqnpycNGjQgJibm2i94Ievfvz8PPfQQ33//PWvXrrW3b9myhT59+lCzZk08PDwIDg5mzJgx/PPPP/Y+gwYNYtasWQAO0xgyvfbaa7Ru3ZqqVatSrlw5wsLCrjhlQsRMOjMrUgzOnTvHqVOnHNosFgtVq1YF4D//+Q+ff/45Q4YMYe/evVSoUIHVq1czb948pkyZku3M4IsvvojFYuHpp5/m5MmTREVF0b59e2JjYylXrhxgCymDBw/m5ptvZurUqZw4cYKZM2fyzTffsGfPHoczWenp6XTq1ImWLVvy2muvsW7dOqZPn06dOnV49NFH7f0eeeQR+3Eff/xxDh06xFtvvcWePXv45ptvcHNzs/c9cOAAvXv3ZsiQIQwcOJB3332XQYMGERYWRsOGDbn99tt5/PHHeeONN3j22We58cYbAew/s0pMTOSdd96hb9++DB06lPPnzzN//nw6derE9u3bCQ0Nzff7k5NWrVpRp04dh4Bw8eJF2rZtS3x8PI888gg1a9bk22+/Zfz48SQkJBAVFWXvO2TIEBYsWEDnzp156KGHSEtLY8uWLXz33Xf2s/Rz5syhYcOGdOvWDVdXVz7//HOGDx9ORkYGI0aMAOCBBx5g4cKFrF69mq5du9qPf/z4cTZs2MDEiRNz9Xyyjj83NzcqVqyYrV9UVBSPPfYY3t7e/N///R8A/v7+1KlTJ0/vV6aXX34ZFxcXxo0bx7lz53jllVfo378/33//vb3PnDlzGDlyJG3atGHMmDHExcXRo0cPKleuTFBQ0BWP7efnxwcffMCLL75IUlISU6dOtddkGAbdunVj48aNDBkyhNDQUFavXs2TTz5JfHx8tikJGzZs4NNPP2XkyJH4+vpmm0aR1e+//869997LsGHDGDhwIO+99x59+vRh1apVdOjQwaHv+fPns73+QIHmul7ugQce4O2332bNmjX2x16yZAkXL17k0UcfpWrVqmzfvp0333yTo0ePsmTJEsD23/OxY8dYu3YtH3zwQbbjzpw5k27dutG/f39SUlL4+OOP6dOnD1988QVdunQplNpFCoUhIkXmvffeM4Acbx4eHg599+7da7i7uxsPPfSQ8ffffxuBgYFG8+bNjdTUVHufjRs3GoARGBhoJCYm2ts//fRTAzBmzpxpGIZhpKSkGNWqVTMaNWpk/PPPP/Z+X3zxhQEYEyZMsLcNHDjQAIznn3/eoZ5mzZoZYWFh9u0tW7YYgLFo0SKHfqtWrcrWft111xmAsXnzZnvbyZMnDQ8PD+OJJ56wty1ZssQAjI0bN2Z77dq2bWu0bdvWvp2WlmYkJyc79Pn7778Nf39/48EHH3RoB4yJEydmO+blDh06ZADGq6++esU+3bt3NwDj3LlzhmEYxpQpU4zy5csbv/32m0O/Z555xrBarcbhw4cNwzCMDRs2GIDx+OOPZztmRkaG/feLFy9mu79Tp05G7dq17dvp6elGUFCQce+99zr0mzFjhmGxWIyDBw9e9Xlmvr9Zb5mvbeYYPXTokH2fhg0bOrz2mfLyfmWO1RtvvNHhfZs5c6YBGHv37jUMwzCSk5ONqlWrGjfffLPDWF+wYIFDnVfTtm1bo2HDhg5ty5YtMwDjhRdecGjv3bu3YbFYjAMHDtjbAMPFxcX4+eefr/lYhvG/8b106VJ727lz54yAgACjWbNm2V6Dq93Kly9/zcebOHGiARh//fVXjvf//fffBmD07NnT3pbT2Jo6daphsViMP//80942YsQI40pRIOsxUlJSjEaNGhl33HHHNWsWKU6aZiBSDGbNmsXatWsdbl999ZVDn0aNGjF58mTeeecdOnXqxKlTp3j//fdxdc3+B5QBAwZQoUIF+3bv3r0JCAhg5cqVAOzcuZOTJ08yfPhwh3l/Xbp0oX79+nz55ZfZjjls2DCH7TZt2nDw4EH79pIlS6hYsSIdOnTg1KlT9ltYWBje3t7Z/tzfoEED2rRpY9/28/OjXr16DsfMC6vVap+XmZGRwZkzZ0hLS6N58+bs3r07X8e8lsxvmp8/fx6wvQZt2rShcuXKDq9B+/btSU9PZ/PmzQAsXboUi8WS41nTy/+Mm3kWHf539r5t27YcPHiQc+fOAeDi4kL//v1ZsWKFvQ6ARYsW0bp16xy/WJiVp6dntvE3ffr0fLwieTd48GCH+bSZYyJzHOzcuZPTp08zdOhQh7Hev39/KleunO/HXblyJVarlccff9yh/YknnsAwjGz//bVt25YGDRrk+vg1atSgZ8+e9m0fHx8GDBjAnj17OH78uEPfCRMmZHv9165dS8eOHfPxzLLLOk7BcWxduHCBU6dO0bp1awzDYM+ePbk67uXH+Pvvvzl37hxt2rQpsv/eRPJL0wxEikGLFi1y9QWwJ598ko8//pjt27fz0ksvXfF/rtdff73DtsVioW7duvZ5j3/++SdAjvMp69evz9atWx3aMud0Xq5y5coOc2F///13zp07R7Vq1XKs6eTJkw7bNWvWzNYn6zHz6v3332f69Ons27fPYQ5pbgJdfiQlJQHY/+Hw+++/8+OPP2Z7rTJlvgZ//PEHNWrUoEqVKlc9/jfffMPEiRPZtm0bFy9edLjv3Llz9mkAAwYMYNq0aXz22WcMGDCA/fv3s2vXLubOnZur52G1Wmnfvn2u+ha2rOMgM6BmjoPMsZp1ZQ9XV9dr/qn/av78809q1Kjh8I8++N+0iMzHzZTXMVS3bl2Hf5gA3HDDDYBtLm/16tXt7Y0bN87x9f/www/z9JhXknWcAhw+fJgJEyawYsWKbP/NZf5D6Vq++OILXnjhBWJjYx2mRGR93iJmU5gVKUEOHjzI77//DsDevXuL7XFz8232jIwMqlWrxqJFi3K8P2vAu9IxjSxfvsmtDz/8kEGDBtGjRw+efPJJqlWrhtVqZerUqfzxxx/5Oua1/PTTT1SrVg0fHx/A9hp06NCBp556Ksf+mWEmN/744w/uvPNO6tevz4wZMwgODsbd3Z2VK1fy+uuvO3yhrEGDBoSFhfHhhx8yYMAAPvzwQ9zd3bnnnnsK9gSLQWGPg6Jy+VlIZ/PTTz8B//sHQXp6Oh06dODMmTM8/fTT1K9fn/LlyxMfH8+gQYOyfVkxJ1u2bKFbt27cfvvtzJ49m4CAANzc3HjvvfdYvHhxkT4fkbxSmBUpITIyMhg0aBA+Pj6MHj2al156id69exMZGZmtb2bgzWQYBgcOHKBJkyaA7dv4APv37+eOO+5w6Lt//377/XlRp04d1q1bx6233lpo/+PPyxme6OhoateuTUxMjMN+uf0CVF5t27aNP/74w2FJqzp16pCUlHTNs5x16tRh9erVnDlz5opnZz///HOSk5NZsWKFw9nLK63OMGDAAMaOHUtCQgKLFy+mS5cuBfoz/NVc6X0pijNymWPxwIEDtGvXzt6elpZGXFycfUzn57jr1q3j/PnzDmcs9+3b5/C4+XXgwAEMw3B4TX777TeAAp1Rzo/ML2916tQJsP1D+LfffuP9999nwIAB9n6Xf5kx05Xe06VLl+Lp6cnq1asd1iB+7733CrN0kUKhObMiJcSMGTP49ttvefvtt5kyZQqtW7fm0UcfzfFb0AsXLnSYHxcdHU1CQgKdO3cGoHnz5lSrVo25c+c6/Hnwq6++4tdff83XN5Hvuece0tPTmTJlSrb70tLSOHv2bJ6PWb58eYBc7Zt5hu/yM3rff/8927Zty/PjXsuff/7JoEGDcHd358knn7S333PPPWzbto3Vq1dn2+fs2bOkpaUB0KtXLwzDYPLkydn6Zdaf0/M5d+7cFcNC3759sVgsjBo1ioMHD1513diCKl++fI7vSV7er9xq3rw5VatWZd68efbXD2xzggsyJeXuu+8mPT2dt956y6H99ddfx2Kx2P9bya9jx47x2Wef2bcTExNZuHAhoaGhDlMMitrixYt55513aNWqFXfeeSeQ89gyDIOZM2dm2/9K76nVasVisTgszxcXF8eyZcsK+RmIFJzOzIoUg6+++sp+RuhyrVu3pnbt2vz6668899xzDBo0iIiICMC2tFZoaCjDhw/n008/ddivSpUq3HbbbQwePJgTJ04QFRVF3bp1GTp0KGBbdmnatGkMHjyYtm3b0rdvX/vSXCEhIfm63Gfbtm155JFHmDp1KrGxsXTs2BE3Nzd+//13lixZwsyZM+ndu3eejhkaGorVamXatGmcO3cODw8P+7qrWXXt2pWYmBh69uxJly5dOHToEHPnzqVBgwb2OYP5sXv3bj788EMyMjI4e/YsO3bssH+B64MPPnA4M/jkk0+yYsUKunbtal9m7MKFC+zdu5fo6Gji4uLw9fWlXbt2PPDAA7zxxhv8/vvv3HXXXWRkZLBlyxbatWvHyJEj6dixI+7u7kRERPDII4+QlJTEvHnzqFatGgkJCdnqzFyndsmSJVSqVKlIl0YKCwtjzpw5vPDCC9StW5dq1apxxx135On9yi13d3cmTZrEY489xh133ME999xDXFwcCxYsoE6dOvk+GxwREUG7du34v//7P+Li4mjatClr1qxh+fLljB49mjp16uS7ZrBNKRkyZAg7duzA39+fd999lxMnThTpmcvo6Gi8vb1JSUmxXwHsm2++oWnTpvbltsA2L75OnTqMGzeO+Ph4fHx8WLp0aY7/OAgLCwPg8ccfp1OnTlitVu677z66dOnCjBkzuOuuu+jXrx8nT55k1qxZ1K1blx9//LHInqNIvpiziIJI2XC1pbkA47333jPS0tKMm2++2QgKCjLOnj3rsH/mMkaffPKJYRj/W+rno48+MsaPH29Uq1bNKFeunNGlSxeH5XYyffLJJ0azZs0MDw8Po0qVKkb//v2No0ePOvQZOHBgjssDZS4HlNXbb79thIWFGeXKlTMqVKhgNG7c2HjqqaeMY8eO2ftcd911RpcuXbLtm3X5JsMwjHnz5hm1a9c2rFarw7JPWftmZGQYL730knHdddcZHh4eRrNmzYwvvvjCGDhwoHHdddc5HJM8LM2VeXN1dTWqVKlitGzZ0hg/fnyOr6dhGMb58+eN8ePHG3Xr1jXc3d0NX19fo3Xr1sZrr71mpKSk2PulpaUZr776qlG/fn3D3d3d8PPzMzp37mzs2rXL3mfFihVGkyZNDE9PTyMkJMSYNm2a8e6772ZbKitT5hJsDz/88FWf2+Wu9P5mymlpruPHjxtdunQxKlSokG15rNy+X5ljdcmSJQ6Pl/m6v/feew7tb7zxhv29bdGihfHNN98YYWFhxl133XXN55jT0lyGYXuvxowZY9SoUcNwc3Mzrr/+euPVV191WB7NMGzjZcSIEdd8nEyZ43v16tVGkyZNDA8PD6N+/frZnuuVXoNM13pvMmX+t5h58/T0NIKCgoyuXbsa7777rnHp0qVs+/zyyy9G+/btDW9vb8PX19cYOnSo8cMPP2R77dPS0ozHHnvM8PPzMywWi8N/8/Pnzzeuv/56+/N77733rvi5IGImi2GUsFn4InJFmzZtol27dixZsiTPZ0HF+S1fvpwePXqwefNmh2XPSqOMjAz8/PyIjIxk3rx5ZpfjICQkhEaNGvHFF1+YXYqIoDmzIiJOY968edSuXZvbbrvN7FIK1aVLl7KtbrBw4ULOnDlz1cvZioiA5syKiJR4H3/8MT/++CNffvklM2fOLHXrfH733XeMGTOGPn36ULVqVXbv3s38+fNp1KgRffr0Mbs8ESnhFGZFREq4vn374u3tzZAhQxg+fLjZ5RS6kJAQgoODeeONN+zLmQ0YMICXX37Z4ephIiI50ZxZEREREXFamjMrIiIiIk5LYVZEREREnFaZmzObkZHBsWPHqFChQqn7EoWIiIhIaWAYBufPn6dGjRq4uFz93GuZC7PHjh0jODjY7DJERERE5BqOHDlCUFDQVfuUuTBboUIFwPbi+Pj4AJCamsqaNWvsl+cUAY0LyU5jQnKicSFZaUwUXGJiIsHBwfbcdjVlLsxmTi3w8fFxCLNeXl74+Pho0ImdxoVkpTEhOdG4kKw0JgpPbqaE6gtgIiIiIuK0FGZFRERExGkpzIqIiIiI01KYFRERERGnZWqY3bx5MxEREdSoUQOLxcKyZcuuuU9ycjL/93//x3XXXYeHhwchISG8++67RV+siIiIiJQ4pq5mcOHCBZo2bcqDDz5IZGRkrva55557OHHiBPPnz6du3bokJCSQkZFRxJWKiIiISElkapjt3LkznTt3znX/VatW8fXXX3Pw4EGqVKkCQEhISBFVJyIiIiIlnVOtM7tixQqaN2/OK6+8wgcffED58uXp1q0bU6ZMoVy5cjnuk5ycTHJysn07MTERsK0Bl5qaav/98p8ioHEh2WlMSE40LiQrjYmCy8tr51Rh9uDBg2zduhVPT08+++wzTp06xfDhwzl9+jTvvfdejvtMnTqVyZMnZ2tfs2YNXl5eDm1r164tkrrFuWlcSFYaE5ITjQvJSmMi/y5evJjrvhbDMIwirCXXLBYLn332GT169Lhin44dO7JlyxaOHz9OxYoVAYiJiaF3795cuHAhx7OzOZ2ZDQ4O5tSpUw5XAFu7di0dOnTQlTrETuNCstKYkJxoXEhWGhMFl5iYiK+vL+fOnbPntStxqjOzAQEBBAYG2oMswI033ohhGBw9epTrr78+2z4eHh54eHhka3dzc8s2wHJqE9G4kKw0JiQnGheSlcZE/uXldXOqdWZvvfVWjh07RlJSkr3tt99+w8XFhaCgIBMrExEREREzmBpmk5KSiI2NJTY2FoBDhw4RGxvL4cOHARg/fjwDBgyw9+/Xrx9Vq1Zl8ODB/PLLL2zevJknn3ySBx988IpfABMRERGR0svUMLtz506aNWtGs2bNABg7dizNmjVjwoQJACQkJNiDLYC3tzdr167l7NmzNG/enP79+xMREcEbb7xhSv0iIiIiYi5T58yGh4dzte+fLViwIFtb/fr19e1AEREREQGcbM6siIiIiMjlFGZFRERExGkpzIqIiIiI01KYFRERERGnpTArIiIiIk5LYVZEREREnJbCrIiIiIg4LYVZEREREXFaCrMiIiIi4rQUZkVERETEaSnMioiIiIjTUpgVEREREaelMCsiIiIiTkthVkRERESclqvZBZjF19cXi8Vi387IyMBqtebY9/J++W0vjGM487FdXFywWCwOt6xt19ou7j4AJ0+e5N1338Vqteb7OWTerFar/ZZ1uzjaLt92dXXFzc3N4ZZTm5ub2xXfUxERkZKgzIbZ1NTUbG1paWkmVCJSsrm4uOQYcq8UfrPe5+HhgYeHB56eng4/c/P71e7PvLm46A9MIiJlWZkNsz///DMVKlQAbMF2w4YNtGvXDjc3t2x9DcPI8RhF3W7mYxd2rYZhkJGRYf89p+2S1ictLY0ffviBRo0a4eLikq/jZv6enp6e7ZaRkZGrtqLom5aWRmpqqv2WuZ2RkZHt/cvIyCA5OZnk5OQrvvdmKleuHOXLl8fLyyvfPytUqICPj4/DzdPTU2elRUScQJkNs0FBQfj4+AC2MOvn50fNmjVzDLNSNqWmprJy5UruvvvuMjMuMjIysgXcnELvtdoy21NSUkhJSSE5OZlLly45/LzS77m5//LQ/c8///DPP/8U+mvh6uqaLeBWqFCBpKQkvvjiCypVqmRvr1KlSrZb5cqVcXUtsx+xIiLFRp+0ImLn4uJi/1N+SZaWlsalS5e4ePEiFy9e5MKFC1f9ea0+SUlJJCYm2m+ZZ+bPnDnDmTNnsj3+li1bclVnZtCtWrVqjoHXz88Pf39/qlWrhr+/P35+fgrAIiJ5pE9NEXE6rq6ueHt74+3tXejHzsjI4OLFiw7hNjExkXPnzvH333/z3XffERQUxIULFxzaM4PvmTNnOHv2LIB937i4uFw/ftWqVfH393cIuZm/V69enaCgIIKCgqhataqmQYiIoDArIuLAxcXFHpRr1KjhcF/mlKRrTT1JS0vj3LlznD592iHkXn47ffo0J0+e5OTJk5w4cYK//vqLjIwMTp8+zenTp/nll1+uWqeHhweBgYH2cHv575m36tWr6wtyIlLqKcyKiBQyV1dXqlatStWqVXO9T3p6OmfOnOHEiRP2W2bQzfz92LFjxMfHc/LkSZKTkzl48CAHDx684jE9PDwICQmhdu3a1KpVi1q1ajn8XqlSpUJ4tiIi5lKYFREpAaxWK35+fvj5+dGoUaOr9k1OTiYhIYGjR4/ab/Hx8Q7bx44dIzk5mf3797N///4cj1O5cmVq1arFDTfcQL169ahfvz716tXjhhtuoHz58kXxNEVECp3CrIiIk8k84xoSEnLFPqmpqRw5coRDhw5x6NAhDh486PD7X3/9xd9//83ff//N7t27s+0fHBzsEHAbNGhA48aN8fPzK8JnJiKSdwqzIiKlkJubG7Vr16Z27do53p+UlERcXBx//PEHv/32G/v372ffvn3s37+fU6dOceTIEY4cOcK6desc9qtevTpNmjRxuNWvX7/Er4AhIqWXwqyISBnk7e1No0aNcpzScPr0afv0hH379rFv3z5++eUXDhw4wPHjxzl+/Dhr1qyx93d1daVevXo0a9aMm2++mZtvvpnQ0FDKlStXnE9JRMoohVkREXFQtWpVWrduTevWrR3ak5KS+Pnnn/nxxx8dbmfPnuXnn3/m559/5sMPPwRsAbdRo0b2cHvzzTfTsGHDMnMBEhEpPgqzIiKSK97e3rRs2ZKWLVva2wzD4OjRo/zwww/s2rWLHTt2sGPHDk6ePElsbCyxsbHMmzcPAC8vL1q1asVtt91GmzZtaNmyZZGsFSwiZYvCrIiI5JvFYiE4OJjg4GC6du0K2ALukSNH7MF2x44d7Ny5k8TERNavX8/69esB2woON910kz3c3n777XlazkxEBBRmRUSkkFksFmrWrEnNmjXp1asXYLuy2i+//MLWrVvZsmULW7ZscQi8r7/+OhaLhZtuuokOHTrQvn17br31Vjw9PU1+NiJS0inMiohIkXNxcbF/4WzYsGEAHD582B5uN2/ezC+//MKuXbvYtWsXL7/8Mp6enrRp04YOHTrQqVMnGjdurEv4ikg2us6hiIiYombNmvTr1485c+bw888/c+zYMRYuXMiAAQMICAjg0qVLrF27lqeeeoqmTZsSEhLCyJEjWb16NcnJyWaXLyIlhMKsiIiUCAEBATzwwAO8//77xMfH8/PPPxMVFcXdd9+Np6cnhw8fZtasWdx11134+vrSq1cvFixYwOnTp80uXURMpDArIiIljsVioUGDBowaNYovv/yS06dPs2LFCoYOHUpAQABJSUnExMQwePBg/P39ueuuu5g/fz5nzpwxu3QRKWYKsyIiUuJ5eXkRERHB22+/zdGjR9mxYwcTJ04kNDSU9PR0Vq9ezUMPPYS/vz+dO3fmvffe4++//za7bBEpBgqzIiLiVFxcXGjevDmTJk1iz549/Pbbb7z44os0bdqUtLQ0Vq1axYMPPoi/vz+9e/fm888/JzU11eyyRaSIKMyKiIhTu/7663n22WeJjY1l3759TJkyhUaNGpGamsrSpUvp1q0bQUFBPPHEE/z4449mlysihUxhVkRESo169erxn//8h7179xIbG8uYMWOoVq0aJ0+eZMaMGTRt2pSbbrqJuXPncv78ebPLFZFCoDArIiKlUtOmTZkxYwZHjx5lxYoV9OrVCzc3N/bs2cOjjz5KYGAgI0eO5Oeffza7VBEpAIVZEREp1dzc3IiIiCA6OpqEhARef/11brjhBs6fP8+sWbNo1KgRbdu25eOPP9bcWhEnpDArIiJlRtWqVRk9ejT79u1j3bp19OrVC6vVyubNm+nbty+1a9dm+vTpJCYmml2qiOSSwqyIiJQ5FouFO++8k+joaP78808mTpyIv78/R48eZdy4cQQHB/PUU09x9OhRs0sVkWtQmBURkTItMDCQSZMmERcXxzvvvMONN95IYmIir776KrVq1WLgwIHs37/f7DJF5AoUZkVERABPT0+GDBnCTz/9xBdffEF4eDhpaWksXLiQBg0a0L9/f/bt22d2mSKShcKsiIjIZVxcXOjSpQsbN25k+/btdO/enYyMDBYvXkyDBg3o168fv/76q9llisi/FGZFRESu4Oabb2bZsmXs3r2bHj16YBgGH330EQ0bNuT+++8nLi7O7BJFyjyFWRERkWto1qwZn332GXv27KFnz54YhsGiRYuoV68e/fo9SWJiIlu3Qnq62ZWKlD0KsyIiIrkUGhpKTEwMO3fupHHjO0lJSSE6eibDhg2jY8dXue66f4iJMbtKkbJFYVZERCSP/vwzjL171wKrsFiacPHiRdLS/o/4+Hr06vUpS5caZpcoUmYozIqIiORBejqMGgVgATrh4bGdUaNGYbHUBI4A99K//538+KMukytSHBRmRURE8mDLFrj8WgoWiwvt2rXDw2MvMBnwJDl5I82aNWXMmDGcO3fOrFJFygSFWRERkTxISMi53WIpB0wAfgV6kpGRTlRUFDfccAMfffQRhqGpByJFQWFWREQkDwICrtUjBIhh2rRV3HDDDZw8eZJ+/frRrVs3jhw5UvQFipQxpobZzZs3ExERQY0aNbBYLCxbtizX+37zzTe4uroSGhpaZPWJiIhk1aYNBAWBxZLz/RYLBAfDE090Yu/evUyePBk3Nze++OILGjZsyOzZs8nIyCjeokVKMVPD7IULF2jatCmzZs3K035nz55lwIAB3HnnnUVUmYiISM6sVpg50/Z71kCbuR0VZevn7u7OhAkTiI2NpVWrVpw/f54RI0Zw++2389tvvxVr3SKllalhtnPnzrzwwgv07NkzT/sNGzaMfv360apVqyKqTERE5MoiIyE6GgIDHduDgmztkZGO7Q0aNGDr1q28+eabeHt788033xAaGsqcOXM0l1akgFzNLiCv3nvvPQ4ePMiHH37ICy+8cM3+ycnJJCcn27cTExMBSE1NJTU11f775T9FQONCstOYkMtFRMDdd8O336Zy/jx88UUqrVvbzsheaYg88sgjdO7cmYcffpgNGzYwfPhwVqxYwX//+18Crj0ZV5yEPisKLi+vnVOF2d9//51nnnmGLVu24Oqau9KnTp3K5MmTs7WvWbMGLy8vh7a1a9cWSp1SumhcSFYaE5KT8+fXsnp17vqOHDmSWrVqsXDhQlatWkWjRo0YPny4/uJYyuizIv8uXryY674Wo4T8fcNisfDZZ5/Ro0ePHO9PT0/nlltuYciQIQwbNgyASZMmsWzZMmJjY6943JzOzAYHB3Pq1Cl8fHwAW/pfu3YtHTp0wM3NrdCekzg3jQvJSmNCclKQcfHzzz8zaNAgfvjhBwCGDBnCjBkzKFeuXFGUKsVEnxUFl5iYiK+vL+fOnbPntStxmjOz58+fZ+fOnezZs4eRI0cCkJGRgWEYuLq6smbNGu64445s+3l4eODh4ZGt3c3NLdsAy6lNRONCstKYkJzkZ1yEhoayfft2Jk6cyLRp05g/fz47d+7k008/5YYbbiiiSqW46LMi//LyujnNOrM+Pj7s3buX2NhY+23YsGHUq1eP2NhYWrZsaXaJIiIieebu7s7UqVNZvXo1fn5+/PDDD4SFhfHJJ5+YXZqIUzD1zGxSUhIHDhywbx86dIjY2FiqVKlCzZo1GT9+PPHx8SxcuBAXFxcaNWrksH+1atXw9PTM1i4iIuJsOnToQGxsLP369ePrr7/mvvvuY9OmTURFReX4F0YRsTH1zOzOnTtp1qwZzZo1A2Ds2LE0a9aMCRMmAJCQkMDhw4fNLFFERKTY1KhRg3Xr1vF///d/WCwW5s6dS3h4OAlXuoauiJgbZsPDwzEMI9ttwYIFACxYsIBNmzZdcf9JkyZd9ctfIiIizsbV1ZUXXniBr776isqVK/Pdd9/RvHlzvv/+e7NLEymRnGbOrIiISFnSqVMnduzYQcOGDTl27Bi33367/WSPiPyPwqyIiEgJVadOHbZt20aPHj1ISUlh8ODBjB49mvT0dLNLEykxFGZFRERKsAoVKrB06VImTpwIwMyZM+nZsycXLlwwuTKRkkFhVkREpIRzcXFh0qRJLFmyBE9PTz7//HPCw8M5fvy42aWJmE5hVkRExEn07t2bDRs24Ovry86dO2nVqhW//vqr2WWJmEphVkRExIm0atWKbdu2UbduXeLi4mjdujVff/212WWJmEZhVkRExMnUrVuXbdu20apVK86ePUunTp34/PPPzS5LxBQKsyIiIk7I19eX9evX0717d5KTk+nZsyeLFi0yuyyRYqcwKyIi4qTKlSvHkiVLuP/++0lPT+eBBx5g9uzZZpclUqwUZkVERJyYm5sb77//PiNGjMAwDEaMGMHUqVPNLkuk2CjMioiIODkXFxfefPNN/vOf/wDw7LPP8txzz2EYhsmViRQ9hVkREZFSwGKxMGXKFF599VUAXnjhBSZOnKhAK6WewqyIiEgpMm7cOKZPnw7AlClTmDRpkrkFiRQxhVkREZFSZuzYsfZA+/zzzyvQSqmmMCsiIlIKjR07ltdeew2AyZMnM3nyZJMrEikaCrMiIiKl1BNPPGGfQztp0iRmzJhhckUihU9hVkREpBQbN24cL774ImALt++++67JFYkULoVZERGRUm78+PGMGzcOgKFDhxITE2NyRSKFR2FWRESklLNYLLzyyisMGTKEjIwM+vbty7p168wuS6RQKMyKiIiUARaLhf/+97/07t2blJQUevTowffff292WSIFpjArIiJSRlitVj788EM6duzIhQsXiIiI4I8//jC7LJECUZgVEREpQzw8PFi6dCk33XQTf/31F3fffTenT582uyyRfFOYFRERKWO8vb354osvqFmzJr/99hvdu3fn0qVLZpclki8KsyIiImVQQEAAK1eupGLFinzzzTcMHDiQjIwMs8sSyTOFWRERkTKqYcOGxMTE4Obmxqeffsr48ePNLkkkzxRmRURESqn0dNi0CT76yPYzPT17nzvuuIN33nkHgFdeeYWFCxcW2rFFioPCrIiISCkUEwMhIdCuHfTrZ/sZEmJrz2rAgAH83//9HwAPP/zwNZfsysuxRYqawqyIiEgpExMDvXvD0aOO7fHxtvacQufzzz9P9+7dSU5OpmfPnhw7dqzQji1SlBRmRURESpH0dBg1Cgwj+32ZbaNHZ58W4OLiwgcffEDDhg1JSEigZ8+e2VY4yO+xRYqSwqyIiEgpsmVL9rOmlzMMOHLE1i+rChUqsHz5cqpUqcL27dt5+OGHMS5LrgU5tkhRUZgVEREpRRISCtavTp06fPrpp1itVj744APeeOONQju2SFFQmBURESlFAgIK3u/OO+9kxowZAIwbN45vv/220I4tUtgUZkVEREqRNm0gKAgslpzvt1ggONjW72oee+wx7r33XtLS0rjnnnv466+/Cu3YIoVJYVZERKQUsVph5kzb71lDZ+Z2VJSt39VYLBbmzZtHvXr1iI+Pp1+/fkB6oRxbpDApzIqIiJQykZEQHQ2BgY7tQUG29sjI3B2nQoUKLF26FC8vL9atW8fkyZML7dgihcXV7AJERESk8EVGQvfutpUFEhJs81jbtMn7WdOGDRvy9ttvc//99zNlyhRatWpFZGTnQjm2SGFQmBURESmlrFYIDy/4cfr378/WrVuZO3cuDzzwAD/++CM1atQolGOLFJSmGYiIiMg1RUVFERoayunTpxk4cCAZGRlmlyQCKMyKiIhILnh4ePDRRx/Z589Onz7d7JJEAIVZERERyaX69esz89/lDJ599ll27txpckUiCrMiIiKSB0OGDKFXr16kpaXRt29fzp8/b3ZJUsYpzIqIiEiuZa4/GxwczIEDB3j88cfNLknKOIVZERERyZPKlSvz4Ycf4uLiwoIFC4iOjja7JCnDFGZFREQkz26//XaeeeYZAB599FFOnjxpckVSVinMioiISL5MnDiRJk2acOrUKR555BEMwzC7JCmDFGZFREQkX9zd3Vm4cCFubm4sW7aMRYsWmV2SlEEKsyIiIpJvTZs2ZeLEiQCMHDmS+Ph4kyuSskZhVkRERArk6aef5uabb+bcuXM89NBDmm4gxUphVkRERArE1dWVhQsX4unpyapVq3jnnXfMLknKEIVZERERKbD69evz4osvAjBu3DiOHTtmckVSVijMioiISKEYNWoULVq0IDExkZEjR5pdjpQRCrMiIiJSKKxWK++88w6urq589tlnxMTEmF2SlAEKsyIiIlJoGjduzNNPPw3YVjc4e/asuQVJqWdqmN28eTMRERHUqFEDi8XCsmXLrto/JiaGDh064Ofnh4+PD61atWL16tXFU6yIiIjkyn/+8x9uuOEGEhIS7MFWpKiYGmYvXLhA06ZNmTVrVq76b968mQ4dOrBy5Up27dpFu3btiIiIYM+ePUVcqYiIiOSWp6cn8+bNA+Dtt99m8+bNJlckpZmrmQ/euXNnOnfunOv+UVFRDtsvvfQSy5cv5/PPP6dZs2aFXJ2IiIjk1+23387DDz/M22+/zdChQ/nxxx/x8PAwuywphUwNswWVkZHB+fPnqVKlyhX7JCcnk5ycbN9OTEwEIDU1ldTUVPvvl/8UAY0LyU5jQnKicXFlL7zwAitWrOC3335j2rRpjB8/3uySioXGRMHl5bWzGCXkMh0Wi4XPPvuMHj165HqfV155hZdffpl9+/ZRrVq1HPtMmjSJyZMnZ2tfvHgxXl5e+S1XREREcuHrr7/m9ddfx93dnTfffBN/f3+zSxIncPHiRfr168e5c+fw8fG5al+nDbOLFy9m6NChLF++nPbt21+xX05nZoODgzl16pT9xUlNTWXt2rV06NABNze3Aj0PKT00LiQrjQnJicbF1RmGQceOHfn666+JiIhg6dKlZpdU5DQmCi4xMRFfX99chVmnnGbw8ccf89BDD7FkyZKrBlkADw+PHOfouLm5ZRtgObWJaFxIVhoTkhONiyubNWsWoaGhfP7556xZs4YuXbqYXVKx0JjIv7y8bk63zuxHH33E4MGD+eijj8rMfwwiIiLOrGHDhowePRqAxx9/nH/++cfcgqRUMTXMJiUlERsbS2xsLACHDh0iNjaWw4cPAzB+/HgGDBhg77948WIGDBjA9OnTadmyJcePH+f48eOcO3fOjPJFREQklyZMmEBgYCAHDx7klVdeMbscKUVMDbM7d+6kWbNm9mW1xo4dS7NmzZgwYQIACQkJ9mALtrXq0tLSGDFiBAEBAfbbqFGjTKlfREREcqdChQrMmDEDgKlTp/LHH3+YXJGUFqbOmQ0PD+dq3z9bsGCBw/amTZuKtiAREREpMn369GHevHmsW7eOJ598kpiYGLNLklLA6ebMioiIiHOyWCxERUVhtVr57LPP2Lhxo9klSSmgMCsiIiLFpmHDhgwbNgyAMWPGsH59Oh99BJs2QXq6ubWJc1KYFRERkWI1adIkypevxA8//ED79u/Rrx+0awchIaCZB5JXCrMiIiJSrDZv9uXChYn/bv0fYLvUfHw89O6tQCt5ozArIiIixSY9HWyLEA0HrgdOAi8BkPmd8NGjNeVAck9hVkRERIrNli1w9CiAOzD939bXgUOALdAeOWLrJ5IbCrMiIiJSbBISLt/qCrQHUoCnrtJP5MoUZkVERKTYBARcvmUBZmCLI9HAd1foJ3JlCrMiIiJSbNq0gaAgsFgyWxoDg/79/WnAIDjY1k8kNxRmRUREpNhYrTBzpu33/wXaSYAHsBn4iqgoWz+R3FCYFRERkWIVGQnR0RAYmNkSDDwOQM2az9C9u5YykNxTmBUREZFiFxkJcXGwcSMsXgzLlz9DpUqVOHx4L4sWLTK7PHEiCrMiIiJiCqsVwsOhb1/o1q0K48ePB+C5557j0qVL5hYnTkNhVkREREqExx57jMDAQA4fPszs2bPNLkechMKsiIiIlAjlypXj+eefB+DFF1/k7Nmz5hYkTkFhVkREREqMAQMGcOONN3LmzBmmT59+7R2kzFOYFRERkRLD1dWVKVOmADBz5kxOnz5tckVS0inMioiISInSs2dPQkNDOX/+PK+99prZ5UgJpzArIiIiJYqLi4t97uwbb7zByZMnTa5ISjKFWRERESlxunbtys0338zFixd55ZVXzC5HSjCFWRERESlxLBaL/ezsrFmzSEhIMLkiKakUZkVERKRE6tSpE61ateLSpUu8/PLLZpcjJZTCrIiIiJRIFovFvrLBf//7X44ePWpyRVISKcyKiIhIiXXHHXdw++23k5yczEsvvWR2OVICKcyKiIhIiXX52dn58+fr7KxkozArIiIiJdrtt99O27ZtSUlJ0bqzko3CrIiIiJR4//nPfwB4++23te6sOFCYFRERkRLvzjvvpEWLFvzzzz+8/vrrZpcjJYjCrIiIiJR4FovFfnb2rbfe4syZMyZXJCWFwqyIiIg4ha5du9K0aVOSkpJ48803zS5HSgiFWREREXEKFouFZ599FoCZM2dy/vx5kyuSkkBhVkRERJxGr169qFevHn///Tdz5swxuxwpARRmRURExGlYrVb72dnp06fzzz//mFyRmE1hVkRERJxK3759CQkJ4eTJk7zzzjtmlyMmU5gVERERp+Lm5sZTTz0FwIwZM0hLSzO5IjGTwqyIiIg4nUGDBuHn50dcXBzR0dFmlyMmUpgVERERp5GeDps2wbJl5ejSZSQAr776KoZhmFuYmEZhVkRERJxCTAyEhEC7dtCvHyxYMAKLxYvdu3ezYcMGs8sTkyjMioiISIkXEwO9e8PRo5e3VsUwHgRg3LhXTalLzKcwKyIiIiVaejqMGgU5zyQYC7gQG7ua3bt/KObKpCRQmBUREZESbcuWrGdkL1cL6APAM8+8VlwlSQmiMCsiIiIlWkLCtXo8CcCGDR9z+PDhIq9HShaFWRERESnRAgKu1SMMaEd6ehpRUVFFX5CUKAqzIiIiUqK1aQNBQWCx5Hy/xQK+vraLKMybN4+zZ88WX3FiOoVZERERKdGsVpg50/Z71kCbuT13bicaNWpEUlIS8+fPL94CxVQKsyIiIlLiRUZCdDQEBjq2BwXZ2nv1sjBq1CgA3nzzTV3itgxRmBURERGnEBkJcXGwcSMsXmz7eeiQrR2gf//+VK1alT///JMVK1aYWqsUH4VZERERcRpWK4SHQ9++tp9W6//uK1euHI888giAvghWhijMioiISKkxfPhwXF1d2bJlC7t37za7HCkGCrMiIiJSagQGBtKnj+0iCjMzvzUmpZrCrIiIiJQqo0ePBuDjjz/m+PHj5hYjRU5hVkREREqVFi1acMstt5CSksLcuXPNLkeKmMKsiIiIlDqPPz4agNdfn8OaNcmkp5tbjxQdU8Ps5s2biYiIoEaNGlgsFpYtW3bNfTZt2sRNN92Eh4cHdevWZcGCBUVep4iIiDiPmBh48slIIJDExJN06vQxISG2dil9TA2zFy5coGnTpsyaNStX/Q8dOkSXLl1o164dsbGxjB49moceeojVq1cXcaUiIiLiDGJioHdviI93A0b+2zqTo0cNevdWoC2NXM188M6dO9O5c+dc9587dy61atVi+vTpANx4441s3bqV119/nU6dOhVVmSIiIuIE0tNh1CgwjMyWocAkYA/wPXALo0dD9+6O69OKczM1zObVtm3baN++vUNbp06d7N9azElycjLJycn27cTERABSU1NJTU21/375TxHQuJDsNCYkJxoXJcfWrXD6NJQrl9niQ0rKPaSnf4DV+hbu7mGcOgWbN8NttxVdHRoTBZeX186pwuzx48fx9/d3aPP39ycxMZF//vmHcv8bvXZTp05l8uTJ2drXrFmDl5eXQ9vatWsLt2ApFTQuJCuNCcmJxkXJ8NFHjtu//96EJ58Ei+UT/vvfTvj4+JCYCCtXFn0tGhP5d/HixVz3daowmx/jx49n7Nix9u3ExESCg4Pp2LEjPj4+gC39r127lg4dOuDm5mZWqVLCaFxIVhoTkhONi5Jj61bo0iV7u8XyMWlpu3jwwSO4uT3Jl18W/ZlZjYmCyfxLem44VZitXr06J06ccGg7ceIEPj4+OZ6VBfDw8MDDwyNbu5ubW7YBllObiMaFZKUxITnRuDDf7bdD1aoQH3/5vFmAEcCDpKXNo3r1p7n9dmuxzJnVmMi/vLxuTrXObKtWrVi/fr1D29q1a2nVqpVJFYmIiEhJYbVC5hVsLZbL77kXqAzEMWDAKn35q5QxNcwmJSURGxtLbGwsYFt6KzY2lsOHDwO2KQIDBgyw9x82bBgHDx7kqaeeYt++fcyePZtPP/2UMWPGmFG+iIiIlDCRkRAdDYGBl7d64e09GIDY2Nmm1CVFx9Qwu3PnTpo1a0azZs0AGDt2LM2aNWPChAkAJCQk2IMtQK1atfjyyy9Zu3YtTZs2Zfr06bzzzjtalktERETsIiMhLg42boTFi20/d+58FICvvvqKgwcPmlugFCpT58yGh4djOE5qcZDT1b3Cw8PZs2dPEVYlIiIizs5qhfDwy1vq0qlTJ1avXs1///tfpk2bZlJlUticas6siIiISH4NHz4cgPnz53Pp0iWTq5HCojArIiIiZUKXLl2oWbMmp0+f5tNPPzW7HCkkCrMiIiJSJlitVh555BEA5syZY3I1UlgUZkVERKTMePDBB3F1deW7777jp59+MrscKQQKsyIiIlJmVK9enW7dugHw9tvz2LTJdgncTZsgPd3U0iSfFGZFRESkTBk6dCgAb731Ae3a/UO/ftCuHYSEQEyMubVJ3inMioiISJly/nwHoCaG8Tew1N4eHw+9eyvQOhuFWRERESkz0tNh7FgrMOTflnn2+zKXvh89WlMOnInCrIiIiJQZW7bA0aMAD2KLQZuB/fb7DQOOHLH1E+egMCsiIiJlRkJC5m9BwN3//v7OVfpJSacwKyIiImVGQMDlW0P//bkASL5KPynJFGZFRESkzGjTBoKCwGIB25nZGsApYDlgaw8OtvUT56AwKyIiImWG1QozZ9p+t1hcgcH/3jPv34ALUVG2fuIcFGZFRESkTImMhOhoCAyE/61qsI7q1Q8SHW27X5yHwqyIiIiUOZGREBcHGzfWonHjDgAMHDhfQdYJKcyKiIhImWS1Qng4PPec7YtgCxcuIF0LzDod17x0rly5MpbMCSVXcebMmXwXJCIiIlKcunXrRpUqVTh27Bhr167lrrvuMrskyYM8hdmoqCj774Zh8Oijj/L8889TrVq1wq5LREREpFh4eHjQr18/3nrrLd577z2FWSeTpzA7cOBAh+3HHnuMXr16Ubt27UItSkRERKQ4DR48mLfeeotly5bx999/U7lyZbNLklzSnFkREREp85o1a0aTJk1ISUnho48+MrscyQOFWRERESnzLBYLgwYNAuC9994ztxjJE4VZEREREeD+++/H1dWVnTt38tNPP5ldjuRSnubMjh071mE7JSWFF198kYoVKzq0z5gxo+CViYiIiBQjPz8/unbtyrJly1iwYAGvvfaa2SVJLuQpzO7Zs8dhu3Xr1hw8eNChLTdLd4mIiIiURIMGDWLZsmV88MEHTJ06FTc3N7NLkmvIU5jduHFjtjbDMACFWBEREXF+d999N9WqVePkyZN89dVXdOvWzeyS5BryPWd2/vz5NGrUCE9PTzw9PWnUqBHvvPNOYdYmIiIiUqzc3Ny4//77AViwYIG5xUiu5CvMTpgwgVGjRhEREcGSJUtYsmQJERERjBkzhgkTJhR2jSIiIiLFJnNVg88//5y//vrL3GLkmvIVZufMmcO8efOYOnUq3bp1o1u3bkydOpW3336b2bNnF3aNIiIiIsWmcePGhIWFkZaWxqJFi8wuR64hX2E2NTWV5s2bZ2vPfONFREREnNngwYMBrTnrDPIVZh944AHmzJmTrf3tt9+mf//+BS5KRERExEx9+/bFzc2NH3/8kR9//NHscuQq8rSaweXmz5/PmjVruOWWWwD4/vvvOXz4MAMGDHBYj1ZrzoqIiIizqVKlCl26dGHZsmV8+OGHvPLKK2aXJFeQrzD7008/cdNNNwHwxx9/AODr64uvr6/DFTO0XJeIiIg4qwceeIBly5axePFipk6ditVqNbskyUG+wmxO682KiIiIlCZdunShUqVKxMfHs2nTJu68806zS5Ic5HudWREREZHSzNXVg9tuuweA1177kPR0kwuSHCnMioiIiGQREwMhIfDFF7YLKKxaFU3NmheJiTG3LslOYVZERETkMjEx0Ls3HD0KcCsQAiRx7NgKevdGgbaEUZgVERER+Vd6OowaBYaR2eIC3P/v7x8AMHo0mnJQgijMioiIiPxry5bMM7KXywyzqzGMkxw5YusnJYPCrIiIiMi/EhJyaq0H3AykAx9fpZ+YQWFWRERE5F8BAVe6J/Ps7IfX6CfFTWFWRERE5F9t2kBQEGS/7tN9gBXYQfXq+2nTpvhrk5wpzIqIiIj8y2qFmTNtvzsG2mpAJwBuu+1DdDGwkkNhVkREROQykZEQHQ2BgY7tVas+AMDOnR+SkZFhQmWSE4VZERERkSwiIyEuDjZuhMWLbT8PHepGhQoViIuL45tvvjG7RPmXwqyIiIhIDqxWCA+Hvn1tPytU8CIyMhKAjz/+2NTa5H8UZkVERERyqW/fvgAsWbKEtLQ0k6sRUJgVERERybU77rgDX19f/vrrL9avX292OYLCrIiIiEiuubm50adPHwBef/0jPvoINm3S5W3NpDArIiIikgc1atimGqxe/Rn9+l2iXTsICYGYGHPrKqsUZkVERERyKSYGnnvuViAISAS+AiA+Hnr3VqA1g8KsiIiISC6kp8OoUWCLT/f92/oRAIZh2xo9WlMOipvCrIiIiEgubNkCR49mbvX99+fnwHnAFmiPHIFt20worgxTmBURERHJhYSEy7eaAdcDl4DlDv2OHy++mqSEhNlZs2YREhKCp6cnLVu2ZPv27VftHxUVRb169ShXrhzBwcGMGTOGS5cuFVO1IiIiUhYFBFy+ZeF/Z2cdL6BQvXoxFSRACQizn3zyCWPHjmXixIns3r2bpk2b0qlTJ06ePJlj/8WLF/PMM88wceJEfv31V+bPn88nn3zCs88+W8yVi4iISFnSpg0EBYHFktmSGWZXA6exWCA4GFq1Mqe+ssr0MDtjxgyGDh3K4MGDadCgAXPnzsXLy4t33303x/7ffvstt956K/369SMkJISOHTvSt2/fa57NFRERESkIqxVmzrT9bgu09YFQIA1YCkBUlK2fFB9Tw2xKSgq7du2iffv29jYXFxfat2/PtivMnm7dujW7du2yh9eDBw+ycuVK7r777mKpWURERMquyEiIjobAwMwW29lZD4+PiI623S/Fy9XMBz916hTp6en4+/s7tPv7+7Nv374c9+nXrx+nTp3itttuwzAM0tLSGDZs2BWnGSQnJ5OcnGzfTkxMBCA1NZXU1FT775f/FAGNC8lOY0JyonFR9kREwN1321Yt2Ls3klGjniYl5WtuuimO1NRAjYlCkJfXztQwmx+bNm3ipZdeYvbs2bRs2ZIDBw4watQopkyZwnPPPZet/9SpU5k8eXK29jVr1uDl5eXQtnbt2iKrW5yXxoVkpTEhOdG4KJuuuw7q16/Pvn37mDJlCt26dbPfpzGRfxcvXsx1X4thZC7zW/xSUlLw8vIiOjqaHj162NsHDhzI2bNnWb58ebZ92rRpwy233MKrr75qb/vwww95+OGHSUpKwsXFceZETmdmg4ODOXXqFD4+PoAt/a9du5YOHTrg5uZWyM9SnJXGhWSlMSE50biQ2bNnM3r0aG6++Wa++eYbjYlCkJiYiK+vL+fOnbPntSsx9cysu7s7YWFhrF+/3h5mMzIyWL9+PSNHjsxxn4sXL2YLrNZ/Z1rnlMs9PDzw8PDI1u7m5pZtgOXUJqJxIVlpTEhONC7Krvvuu4+xY8eyY8cOjhw5QnBwMKAxURB5ed1MX81g7NixzJs3j/fff59ff/2VRx99lAsXLjB48GAABgwYwPjx4+39IyIimDNnDh9//DGHDh1i7dq1PPfcc0RERNhDrYiIiEhx8ff3Jzw8HIDo6GhziymDTJ8ze++99/LXX38xYcIEjh8/TmhoKKtWrbJ/Kezw4cMOZ2L/85//YLFY+M9//kN8fDx+fn5ERETw4osvmvUUREREpIy755572LBhA59++iljxowxu5wyxfQwCzBy5MgrTivYtGmTw7arqysTJ05k4sSJxVCZiIiIyLVFRkYyfPhwdu3axcGDB80up0wxfZqBiIiIiLPz8/OjXbt2AEyfbruAwtatkJ5uZlVlg8KsiIiISCGoW/ceAN55xxZmu3SBkBCIiTGxqDJAYVZERESkgGJi4L//7QlYMYzdHD9+HID4eOjdW4G2KCnMioiIiBRAejqMGgXgB9imGnz77bcAZK4aOnq0phwUFYVZERERkQLYsgWOHs3c6gPA1q1b7fcbBhw5YusnhU9hVkRERKQAEhIu37JNNTh48CAZGX9cpZ8UFoVZERERkQIICLh8yw8Xl3AA0tOXXqWfFBaFWREREZECaNMGgoLAYrFtW629gf+FWYsFgoNt/aTwKcyKiIiIFIDVCjNn2n63WMBq7Y6LiwuGsQewTTWIirL1k8KnMCsiIiJSQJGREB0NgYFgsfjSuHFjACpWXEJ0tO1+KRoKsyIiIiKFIDIS4uLgyy/htttuA6B27U8VZIuYwqyIiIhIIbFa4bbboGXLllitVvbs2cOBAwfMLqtUU5gVERERKWQ+Pj7ccccdACxZssTkako3hVkRERGRItCrVy9AYbaoKcyKiIiIFIHu3bvbpxr8/vvvZpdTainMioiIiBSBqlWrcueddwKwdOnSa/SW/FKYFRERESkimVMNYmJiTK6k9FKYFRERESki3bt3x2KxsGPHDg4fPmx2OaWSwqyIiIhIEfH396fNv9ex1dnZoqEwKyIiIlKEMqcavPdeDB99BJs2QXq6uTWVJgqzIiIiIkXI07MnAD/+uJV+/Y7Trh2EhIBO1BYOhVkRERGRIhITA8OGBQMtAANYBkB8PPTurUBbGBRmRURERIpAejqMGgWGAdDr31ZberW1wejRmnJQUAqzIiIiIkVg2zY4ejRzK/LfnxuBM4At0B45Alu2mFBcKaIwKyIiIlIEjh+/fKsu0ARIA1Y49Fu6VF8KKwiFWREREZEiUL161hbHqQaZ3noLfSmsABRmRURERIpAq1YQFAQWS2ZL5lSDNcD5bP31pbD8UZgVERERKQJWK8ycafvdFmgbAjcAycCX2frrS2H5ozArIiIiUkQiIyE6GgIDASz8b6rB0hz760theacwKyIiIlKEIiMhLg42boQ+fTKnGqwE/rniPgkJxVFZ6aAwKyIiIlLErFYID4dHHw0DrgMuAquv2D8goJgKKwUUZkVERESKye23W/D2zjw7m32qgcUCwcHQpk3x1uXMFGZFREREionVCs88kxlmPwdS7PdlrnoQFWXrJ7mjMCsiIiJSjMaPb02lStWBc8AGe3tQkO3LYpGRV9xVcqAwKyIiIlKMXFxc6Nu3JwBduixl8WLbl8MOHVKQzQ+FWREREZFiFvlvav3++2Xcc0864eGaWpBfCrMiIiIixaxt27ZUqVKFU6dOsUWLyhaIwqyIiIhIMXNzc6Nbt24AfPbZZyZX49wUZkVERERM0LOnbd7ssmXLMDKvZSt5pjArIiIiYoIOHTrg5eXF4cOH2bNnj9nlOC2FWRERERETlCtXjrvuuguwnZ2V/FGYFRERETFJjx49ANu82fR02LQJPvrI9jM93czKnIer2QWIiIiIlFVdu3bFarXy008/ERR0gOPH69rvCwqCmTO19uy16MysiIiIiEkqV65MgwbhABw/vszhvvh46N0bYmKKvy5nojArIiIiYpL0dDhypOe/W8sc7stc4GD0aE05uBqFWRERERGTbNkCZ892/3frW+CEw/2GAUeO2PpJzhRmRUREREySkAAQBNwMGMCKq/STnCjMioiIiJgkICDztx7//sz5amD/6ydZKcyKiIiImKRNG9uqBZA5b3Y9kGi/32KB4GBbP8mZwqyIiIiISaxW2/JbUB+4AUgBvgJsQRYgKsrWT3KmMCsiIiJioshIWLrUQoUKjqsaBAVBdLTWmb0WhVkRERERk0VGwldf9QCgXLkvWb06mUOHFGRzQ2FWREREpARo1aoFAQEB/PPPeTIyNmpqQS4pzIqIiIiUAC4uLnTvbltz9rPPcl7VQLIrEWF21qxZhISE4OnpScuWLdm+fftV+589e5YRI0YQEBCAh4cHN9xwAytXriymakVERESKRs+etnmzy5cvJyMjw+RqnIPpYfaTTz5h7NixTJw4kd27d9O0aVM6derEyZMnc+yfkpJChw4diIuLIzo6mv379zNv3jwCAwOLuXIRERGRwhUeHk7FihU5ceIE3333ndnlOAXTw+yMGTMYOnQogwcPpkGDBsydOxcvLy/efffdHPu/++67nDlzhmXLlnHrrbcSEhJC27Ztadq0aTFXLiIiIlK43N3d6dKlCwDLli0ztxgn4Wrmg6ekpLBr1y7Gjx9vb3NxcaF9+/Zs27Ytx31WrFhBq1atGDFiBMuXL8fPz49+/frx9NNPY81hpnRycjLJycn27cRE20LEqamppKam2n+//KcIaFxIdhoTkhONC8mqoGOia9euLF68mM8++4wXXngBS+aCs2VIXl47U8PsqVOnSE9Px9/f36Hd39+fffv25bjPwYMH2bBhA/3792flypUcOHCA4cOHk5qaysSJE7P1nzp1KpMnT87WvmbNGry8vBza1q5dW4BnI6WVxoVkpTEhOdG4kKzyOyYsFgtubm4cOHCA//73v9SsWbOQKyv5Ll68mOu+pobZ/MjIyKBatWq8/fbbWK1WwsLCiI+P59VXX80xzI4fP56xY8fatxMTEwkODqZjx474+PgAtvS/du1aOnTogJubW7E9FynZNC4kK40JyYnGhWRVGGPigw8+YOXKlZw5c4Zhw4YVcoUlX+Zf0nPD1DDr6+uL1WrlxIkTDu0nTpygevXqOe4TEBCAm5ubw5SCG2+8kePHj5OSkoK7u7tDfw8PDzw8PLIdx83NLdsAy6lNRONCstKYkJxoXEhWBRkTkZGRrFy5ks8//5y2bSeSkAABAdCmTdm4tG1eXjdTvwDm7u5OWFgY69evt7dlZGSwfv16WrVqleM+t956KwcOHHBYruK3334jICAgW5AVERERcUYRERG4uLiwa9cu2rU7TL9+0K4dhIRATIzZ1ZUspq9mMHbsWObNm8f777/Pr7/+yqOPPsqFCxcYPHgwAAMGDHD4gtijjz7KmTNnGDVqFL/99htffvklL730EiNGjDDrKYiIiIgUqq1bq5GRceu/W8vt7fHx0Lu3Au3lTJ8ze++99/LXX38xYcIEjh8/TmhoKKtWrbJ/Kezw4cO4uPwvcwcHB7N69WrGjBlDkyZNCAwMZNSoUTz99NNmPQURERGRQpOeDqNGAfQAtgDLgMcAMAywWGD0aOjevWxMObgW08MswMiRIxk5cmSO923atClbW6tWrbSQsIiIiJRKW7bA0aNgC7NPAF8Dp4GqgC3QHjli6xceblKRJYjp0wxERERE5H8SEjJ/qw00AdKBL67Sr2xTmBUREREpQQICLt/q8e/P5dfoV3YpzIqIiIiUIG3aQFCQbW7s/8LsauAfwNYeHGzrJwqzIiIiIiWK1QozZ2ZuhQI1gYvAOjKvbBsVpS9/ZVKYFRERESlhIiMhOhqCgixA939blxEYCJMmQXIybNpkW/mgrFOYFRERESmBIiMhLg6mT+8BQPnyn2MY6UyciC6icBmFWREREZESymqFxx5rQ/nylbhw4S/i47c53K+LKCjMioiIiJRoLi5uGEbXf7eWOdxnGLafo0eX3SkHCrMiIiIiJdiWLXDxYo9/t5YBhsP9l19EoSxSmBUREREpwWwXR+gEeAB/AL9cpV/ZozArIiIiUoLZLo7gDbT/tyX7BRT+16/sUZgVERERKcEyL6Jw+RJdlyvrF1FQmBUREREpwf53EYUIwALsAOIBdBEFFGZFRERESrzISFi6tDru7q3+bVkB2M7YRkfb7i+rFGZFREREnEBkJEyebJtq0LjxMjZuhEOHynaQBXA1uwARERERyZ0+fXpx7tzf9OzZkxYtzK6mZFCYFREREXESderUYerUqWaXUaJomoGIiIiIOC2FWRERERFxWgqzIiIiIuK0FGZFRERExGnpC2AiIiIiTig9HbZsgYQE26Vs27QpmxdOUJgVERERcTIxMTBqFBw9+r+2oCDblcLK2rqzmmYgIiIi4kRiYqB3b8cgCxAfb2uPiTGnLrMozIqIiIg4ifR02xlZw8h+X2bb6NG2fmWFwqyIiIiIk9iyJfsZ2csZBhw5YutXVijMioiIiDiJhITC7VcaKMyKiIiIOImAgMLtVxoozIqIiIg4iTZtbKsWWCw532+xQHCwrV9ZoTArIiIi4iSsVtvyW5BzoDUM6NXLNme2rHwJTGFWRERExIlERkJ0NAQGOrZnXjAhKgratYOQkLKxTJfCrIiIiIiTiYyEuDjYuNG2FBdkPxNbVtadVZgVERERcUJWq21ubHR0zveXlXVnFWZFREREnJTWnVWYFREREXFaWndWYVZERETEaWndWYVZEREREaeldWcVZkVERESc1tXWnc3cjor637JdpZHCrIiIiIgTu9K6s0FBtvbISHPqKi6uZhcgIiIiIgUTGQndu9tWLUhIsM2RbdOmdJ+RzaQwKyIiIlIKWK0QHm52FcVP0wxERERExGkpzIqIiIiI09I0AxEREZFSJj297MyfVZgVERERKUViYmDUKMfL3AYF2ZbwKo0rG2iagYiIiEgpERMDvXs7BlmA+Hhbe0yMOXUVJYVZERERkVIgPd12RtYwst+X2TZ6tK1faaIwKyIiIlIKbNmS/Yzs5QwDjhyx9StNFGZFRERESoGEhMLt5ywUZkVERERKgYCAwu3nLBRmRUREREqBNm1sqxZYLDnfb7FAcLCtX2miMCsiIiJSClittuW3IHugzdyOiip9680qzIqIiIiUEpGREB0NgYGO7UFBtnatM1tEZs2aRUhICJ6enrRs2ZLt27fnar+PP/4Yi8VCjx49irZAEREREScRGQlxcbBxIyxebPt56FDpDLJQAq4A9sknnzB27Fjmzp1Ly5YtiYqKolOnTuzfv59q1apdcb+4uDjGjRtHm9I28UNERESkgKxWCA83u4riYfqZ2RkzZjB06FAGDx5MgwYNmDt3Ll5eXrz77rtX3Cc9PZ3+/fszefJkateuXYzVioiIiEhJYuqZ2ZSUFHbt2sX48ePtbS4uLrRv355t27Zdcb/nn3+eatWqMWTIELZcY+Xf5ORkkpOT7duJiYkApKamkpqaav/98p8ioHEh2WlMSE40LiQrjYmCy8trZ2qYPXXqFOnp6fj7+zu0+/v7s2/fvhz32bp1K/Pnzyc2NjZXjzF16lQmT56crX3NmjV4eXk5tK1duzZ3hUuZonEhWWlMSE40LiQrjYn8u3jxYq77mj5nNi/Onz/PAw88wLx58/D19c3VPuPHj2fs2LH27cTERIKDg+nYsSM+Pj6ALf2vXbuWDh064ObmViS1i/PRuJCsNCYkJxoXkpXGRMFl/iU9N0wNs76+vlitVk6cOOHQfuLECapXr56t/x9//EFcXBwRERH2toyMDABcXV3Zv38/derUcdjHw8MDDw+PbMdyc3PLNsByahPRuJCsNCYkJxoXkpXGRP7l5XUz9Qtg7u7uhIWFsX79entbRkYG69evp1WrVtn6169fn7179xIbG2u/devWjXbt2hEbG0twcHBxli8iIiIiJjN9msHYsWMZOHAgzZs3p0WLFkRFRXHhwgUGDx4MwIABAwgMDGTq1Kl4enrSqFEjh/0rVaoEkK1dREREREo/08Psvffey19//cWECRM4fvw4oaGhrFq1yv6lsMOHD+PiUrwnkA3DIC0tjfT09GJ9XClZUlNTcXV15dKlSxoLAjjvmLBarbi6umK50gXbRaRUS0+HLVsgIQEyl/A/eRICAqBNG+e/vK3pYRZg5MiRjBw5Msf7Nm3adNV9FyxYUKi1pKSkkJCQkKdv0UnpZBgG1atX58iRIwoBAjj3mPDy8iIgIAB3d3ezSxGRYhQTA6NGwdGjOd8fFAQzZzr31cFKRJgtKTIyMoiLi8NqtVKjRg3c3d2d7n9YUngyMjJISkrC29u72P86ICWTM44JwzBISUnhr7/+4tChQ1x//fVOU7uIFExMDPTuDYZx5T7x8bY+0dHOG2gVZi+TmppKRkYGwcHB2daglbInIyODlJQUPD099T9/AZx3TJQrVw43Nzf+/PNPe/0iUrqlp9vOyF4tyILtfosFRo+G7t2dc8qB83waFwPj33fcmf4nJSKSG/pcEylbtmy58tSCrAwDjhyx7eOM9OkmIiIiUsokJBTPPiWBwqyUaJMmTSI0NNTsMkRERJxKQEDx7FMSKMyWEoMGDcJisWCxWHBzc8Pf358OHTrw7rvv2q+SllsLFiywr99bUOHh4fa6PD09adCgAbNnz871/uPGjXO4qEZuhISEEBUVlcdKRURESo82bWwrFeTme+wWCwQH2/ZxRgqzRSQ9HTZtgo8+sv0sjiUp77rrLhISEoiLi+Orr76iXbt2jBo1iq5du5KWllb0BVzB0KFDSUhI4JdffuGee+5hxIgRfPTRR7na19vbm6pVqxZxhSIiIqWL1WpbcguuHmgz74uKcs4vf4HCbJGIiYGQEGjXDvr1s/0MCbG1FyUPDw+qV69OYGAgN910E88++yzLly/nq6++cliPd8aMGTRu3Jjy5csTHBzM8OHDSUpKAmzr+g4ePJhz587Zz6hOmjQJgA8++IDmzZtToUIFqlevTr9+/Th58uQ16/Ly8qJ69erUrl2bSZMmcf3117NixQrAdlGM7t274+3tjY+PD/fccw8nTpyw75t1msGgQYPo0aMHr732GgEBAVStWpURI0aQmpoK2M4E//nnn4wZM8ZeP8Cff/5JREQElStXpnz58jRs2JCVK1cW5OUWEREp0SIjbUtuBQZeuU9QkHMvywUKs4Uuc023rN8gzFzHragDbVZ33HEHTZs2JeayB3ZxceGNN97g559/5v3332fDhg089dRTALRu3ZqoqCh8fHxISEggISGBcePGAbaly6ZMmcIPP/zAsmXLiIuLY9CgQXmuqVy5cqSkpJCRkUH37t05c+YMX3/9NWvXruXgwYPce++9V91/48aN/PHHH2zcuJH333+fBQsW2MN6TEwMQUFBPP/88/b6AUaMGEFycjKbN29m7969TJs2DW9v7zzXLiIi4kwiIyEuDjZuhMWLYd06223xYlvboUPOHWRB68wWqqut6WbmOm7169fnxx9/tG+PHj3a/ntISAgvvPACw4YNY/bs2bi7u1OxYkUsFgvVq1d3OM6DDz5o/7127dq88cYb3HzzzfZF5K8lPT2djz76iB9//JGHH36Y9evXs3fvXg4dOkRwcDAACxcupGHDhuzYsYObb745x+NUrlyZt956C6vVSv369enSpQvr169n6NChVKlSBavVaj97nOnw4cP06tWLxo0b2+sXEREpC6xWCA/P3n75ZW6d+dK2OjNbiK61pptZ67gZhuFwJbN169Zx5513EhgYSIUKFXjggQc4ffr0NS/hu2vXLiIiIqhZsyYVKlSgbdu2gC0oXs3s2bPx9vamXLlyDB06lDFjxvDoo4/y66+/EhwcbA+yAA0aNKBSpUr8+uuvVzxew4YNsV72X1tAQMA1pzs8/vjjvPDCC9x6661MnDjRIdyLiIiUNWZNiSwKCrOFKLfrsxX3Om6//vortWrVAiAuLo6uXbvSpEkTli5dyq5du5g1axYAKSkpVzzGhQsX6NSpEz4+PixatIgdO3bw2WefXXM/gP79+xMbG8uhQ4e4cOECM2bMKNAC7m5ubg7bFovlmis2PPTQQxw8eJAHHniAvXv30rx5c95888181yAiIuKsStqUyIJSmC1EuV2frTjXcduwYQN79+6lV69egO3sakZGBtOnT+eWW27hhhtu4NixYw77uLu7k55l+YV9+/Zx+vRpXn75Zdq0aUP9+vVz9eUvgIoVK1K3bl0CAwMdQuyNN97IkSNHOHLkiL3tl19+4ezZszRo0CC/TznH+gGCg4MZNmwYMTExPPHEE8ybNy/fjyEiIuKMrjUlEmxTIotjFabCojBbiK61pltRr+OWnJzM8ePHiY+PZ/fu3bz00kt0796drl27MmDAAADq1q1Lamoqb775JgcPHuSDDz5g7ty5DscJCQkhKSmJ9evXc+rUKS5evEjNmjVxd3e377dixQqmTJlSoHrbt29P48aN6d+/P7t372b79u0MGDCAtm3b0rx583wfNyQkhM2bNxMfH8+pU6cA2zzh1atXc+jQIXbv3s3GjRu58cYbC1S/iIiIsympUyILQmG2EF1tTbfiWMdt1apVBAQEEBISwl133cXGjRt54403WL58uX2OadOmTZkxYwbTpk2jUaNGLFq0iKlTpzocp3Xr1gwbNox7770XPz8/XnnlFfz8/FiwYAFLliyhQYMGvPzyy7z22msFqtdisbB8+XIqV67M7bffTvv27alduzaffPJJgY77/PPPExcXR506dfDz8wNsXz4bMWIEN954I3fddRc33HBDni7eICIiUhqU1CmRBWExjJxONJdeiYmJVKxYkXPnzuHj4wPYlpxauXIld9xxB0ePHqVWrVp4enrm+zFiYmyn8C//l09wsC3IOvvyF2VJRkYGiYmJ+Pj4FGiOr5QezjwmLl26xKFDhwr8+SbZZf4/5O677842p1/KppI8JjZtsn3Z61o2bsx5BYTiklNeuxItzVUEIiNty2+VhuUuREREpPTInBIZH5/zvFmLxXa/M13aVmG2iFxpTTcRERERs2ROiezd2xZcLw+0znppW+f6O5mIiIiIFMiVLnPrrJe21ZlZERERkTKmNE2JVJgVERERKYMunxLpzJe2VZgVERERKcNyWoUpKMg2t9YZphxozqyIiIhIGVUaLm2rMCsiIiJSBpWWS9sqzIqIiIiUQaXl0rYKsyIiIiJlUG4vWbt8edHWUVAKsyIiIiJlUEBA7vpFRZXsubMKsyJS5L744gvq1avH9ddfzzvvvJOnfvv37yc0NNR+K1euHMuWLSumykVESq/MS9tei8VSsufOamkuESlSaWlpjB07lo0bN1KxYkXCwsLo2bMnVatWzVW/evXqERsbC0BSUhIhISF06NDBhGciIlK6ZF7atlevq/e7fO5s5rq0JYnOzJYR4eHhjB49utQ/ppQ827dvp2HDhgQGBuLt7U3nzp1Zs2ZNvvqtWLGCO++8k/LlywNw66238v333wMwZMgQXn/99aJ/QiIipUhkpO2sa27ExxdpKfmmMFuKDBo0CIvFku124MABYmJimDJlir3vlYJmcQfQ48eP89hjj1G7dm08PDwIDg4mIiKC9evXF1sNzmDz5s1ERERQo0YNLBZLrv7MPmnSpGxjoX79+g590tPTee6556hVqxblypWjTp06TJkyBSOndVry6dixYwRedgHwwMBA4nP4RMxNv08//ZR7773Xvv3cc8/x8ssvM2PGDFxcXBgzZkyh1V1YZs2aRUhICJ6enrRs2ZLt27cXeL/cvLciIrnVvXvu+o0ZUzLnzirMljJ33XUXCQkJDrdatWpRpUoVKlSoYHZ5DuLi4ggLC2PDhg28+uqr7N27l1WrVtGuXTtGjBiR7+OmpKQUYpUlw4ULF2jatCmzZs3K034NGzZ0GAtbt251uH/atGnMmTOHt956i19//ZVp06bxyiuv8Oabb+bpcUJDQ2nUqFG227Fjx/J0nKtJTEzk22+/5e6777a33XXXXRw+fJgvv/yS2bNn5+o44eHhLFiwoNDquppPPvmEsWPHMnHiRHbv3k3Tpk3p1KkTJ0+eLPB+13pvRURyK3PurMVy9X6nTpXMCykozJYyHh4eVK9e3eFmtVodzrgOGjSIr7/+mpkzZ9rP6sTFxV2xPSMjg6lTp9rP3jVt2pTo6GiHx71w4QIDBgzA29ubgIAApk+ffs1ahw8fjsViYfv27fTq1YsbbriBhg0bMnbsWL777jt7v5CQEKKiohz2DQ0NZdKkSYAtnIwcOZLRo0fj6+tLp06dePvtt6lRowYZGRkO+3Xv3p0HH3wQIFfPKzeCgoKyBalvv/0WLy8v/vzzzzwfLyedO3fmhRdeoGfPnnnaz9XV1WEs+Pr6Zquze/fudOnShZCQEHr37k3Hjh2znT08fPgw/fr1o3LlylSpUoX+/fvz999/2++PjY3lp59+ynarUaMGNWrUcDjDGh8fT40aNbLVeq1+y5cvp2PHjnh6etrbduzYwZkzZ6hYsSJubm55em2Kw4wZMxg6dCiDBw+mQYMGzJ07Fy8vL959990C73et91ZEJLcy585eS0m9kILCbBk0c+ZMWrVqxdChQ+1ndYKDg6/YPnXqVBYuXMjcuXP5+eefGTNmDPfffz9ff/21/ZhPPvkkX3/9NcuXL2fNmjVs2rSJ3bt3X7GGM2fOsGrVKkaMGGGf/3i5SpUq5ek5vf/++7i7u/PNN98wd+5c+vTpw+nTp9m4cWO2x+zfvz9Arp7X4sWLsVqtV33sli1bsmPHDvu2YRiMHj2aMWPGcN111zn0femll/D29r7q7fDhw3l67lfz+++/U6NGDWrXrk3//v2zHbt169asX7+e3377DYAffviBrVu30rlzZ3ufAwcOEBYWRt26dfnuu+9Yu3YtBw4c4Mknn8xVDS1atOCnn34iPj6epKQkvvrqKzp16pTnflmnGMTHx/PQQw+xYcMG4uLi+Omnn/L02hS1lJQUdu3aRfv27e1tLi4utG/fnm3bthV4v2u9tyIieREZCdHRcK1/F5fECyloNYNrMAyDixcvmvLYXl5eWK51zj+LL774Am9vb/t2586dWbJkiUOfihUr4u7ujpeXF9WrV79qe3JyMi+99BLr1q2jVatWANSuXZutW7fy3//+l7Zt25KUlMT8+fP58MMPufPOOwFbuAy6ynofBw4cwDCMQpvnd/311/PKK684tHXu3JnFixfba4qOjsbX15d27drl6nkB+Pj4UK9evas+9i233ML7779v3/7ggw84cuQI48ePz9Z32LBh3HPPPVc9Xk5nLfOjZcuWLFiwgHr16pGQkMDkyZNp06YNP/30k33KyTPPPENiYiL169fHarWSnp7Oiy++aA/8YDuDPnz4cCZPnmxve+qpp3IdZl1dXZk+fTrt2rUjIyODp556ymElg9DQUGJjY6/a79y5c2zfvp2lS5cC8M8//9CnTx/efPNNatWqxfjx45kyZQqffPJJgV+3wnLq1CnS09Px9/d3aPf392ffvn0F2i83762ISF5FRsI//8D991+77/LlJWdlA4XZa7h48aJDOCxOSUlJOZ61vJp27doxZ84c+3Ze98/qwIEDXLx4MdtSSCkpKTRr1gyAP/74g5SUFFq2bGm/v0qVKlcNgYX5BSOAsLCwbG39+/dn6NChzJ49Gw8PDxYtWsR9992Hi4tLrp4XQNeuXenXr99VH/uWW27hmWeeISkpCYvFwrPPPssLL7yQ47ipUqUKVapUyeezzJvLz642adKEli1bct111/Hpp58yZMgQwHa2c9GiRSxevJiGDRsSGxvL6NGjqVGjBgMHDuTPP/9k7dq1bN261WHqSHp6OsHBwbmupVu3bnTr1i3H+zKX3bpav4oVK3LixAn7drly5fj222/t23369KFPnz45Hv+ll17ipZdesm//888/fPfdd4wcOdLe9ssvv1CzZs0r1v/MM88wbdq0K94P8Ouvvxbbl7By896KiOTHZd/DvaqoKNtc28jIIi0nVxRmS5ny5ctTt27dQjteUlISAF9++aXDN83BNj83v66//nosFstVz1BlcnFxyRZ+U1NTHbZzCu0REREYhsGXX37JzTffzJYtW+xLNxXm8woLC8PFxYXdu3ezbt06/Pz8GDx4cI59swarnFwrWOVXpUqVuOGGGzhw4IC97cknn+SZZ57hvvvuA6Bx48b8+eefTJ06lYEDB/LDDz9QpUoV+/JXlytXrlyh11gUsp4N79+/P7169SLysk/ga50Nf+KJJxg0aBAZGRkkJSXh7e2Ni4vjLK3atWs7bPv6+mK1Wh1COMCJEycc/iKSVX72y+m9FRHJj8wvgx09evV+mRdS6N7dNufWTAqz1+Dl5WUPPmY8dlFxd3cnPYfZ21nbGzRogIeHB4cPH7b/6T2rOnXq4Obmxvfff28PYX///Te//fbbFfepUqUKnTp1YtasWTz++OPZwujZs2ft82b9/PxIuOwC0omJiRw6dOiaz9HT05PIyEgWLVrEgQMHqFevHjfddFOun1dueXl50bhxY5YuXcq8efNYuXJltqCTqTinGWSVlJTEH3/8wQMPPGBvu3jxYrZarVar/Ytzbm5unD9/nho1ahTpeCxKWc+GlytXjmrVquXpH31+fn74+fmRkZFBYmIiPj4+V3yPM7m7uxMWFsb69evp0aMHYPvS4fr16x3OChfGfjm9tyIi+eGMF1JQmL0Gi8VS4D/Vl0QhISF8//33xMXF4e3tTZUqVXBxccmxfdy4cYwZM4aMjAxuu+02zp07xzfffIOPjw8DBw7E29ubIUOG8OSTT1K1alWqVavG//3f/13zf/azZs3i1ltvpUWLFjz//PM0adKEtLQ01q5dy5w5c/j1118BuOOOO1iwYAERERFUqlSJCRMmXPNLWZn69+9P165d+fnnn7n/sklAFSpUuObzAtsc5BdeeOGaZ5BvueUW3nzzTbp37074Vf6rzu80g6SkJIezbocOHSI2NpYqVarY/wHx1ltv8dlnn9nX6B03bhwRERFcd911HDt2jIkTJ2K1Wunbt6/9OBEREbz44ovUrFmThg0bsmfPHmbMmGFf8aFly5b4+PgwYMAAnnvuOcqXL8+BAwdYtWpVthUmJLuxY8cycOBAmjdvTosWLYiKiuLChQsOZ+6zvm+52S83762ISH5lXkghNx/zl51rMo3CbBk1btw4Bg4cSIMGDfjnn384dOgQISEhObZPmTIFPz8/pk6dysGDB6lUqRI33XQTzz77rP14r776KklJSURERFChQgWeeOIJzp07d9Uaateuze7du3nxxRd54oknSEhIwM/Pj7CwMId5v+PHj+fQoUN07dqVihUrMmXKlFydmQVbEK5SpQr79+/PNvc1N88rMTGR/fv3X/NxmjZtipubG6+++mqu6sqrnTt30q5dO/v22LFjARg4cKB9zdRTp07xxx9/2PscPXqUvn37cvr0afz8/Ljtttv47rvv8PPzs/d58803ee655xg+fDgnT56kRo0aPPLII0yYMAGwhe+VK1fy9NNPc/vtt2MYBtdff7097MvV3Xvvvfz1119MmDCB48ePExoayqpVqxy+3JX1fcvNfrl5b0VECqJ799yF2YCAIi/lmixGYX8Tp4RLTEykYsWKnDt3Dh8fH8A2/3LlypXccccdHD16lFq1ajmsZSllU17+pNyuXTtuuummXK2vK84rL2OipLl06RKHDh3S51sRyPx/yN13310i1zuW4lcaxkR6OoSE2C5hm1NStFhsc2sPHSqaObM55bUr0ZlZkXzKyMjgr7/+Yv78+fz+++8sX77c7JJEREQKRebc2d69bcH18kCbuWpoVJT5X/4CXTRBJN82b95MQEAAH374IUuXLr3mvxxFREScSeaFFLIu1xUUZGsvCctygc7MiuRbeHh4tsvlioiIlCaRkbb5s1u22L7sFRBgW76rJJyRzaQwKyIiIiJXZLWav/zW1WiagYiIiIg4LYVZEREREXFaCrMiIiIi4rQUZkVERETEaSnMXsby78JpZew6EiJSBuhzTURKK4XZy7i62hZ3uHjxosmViIgUrszPNWe9GpGIyJVoaa7LWK1WKlWqxMmTJwHw8vKyn62VsicjI4OUlBQuXbrkdJculaLhjGPCMAwuXrzIyZMnqVSpEtaStDikiEghUJjNonr16gD2QCtll2EY/PPPP5QrV07/qBHAucdEpUqV7J9vIiKlSYkIs7NmzeLVV1/l+PHjNG3alDfffJMWLVrk2HfevHksXLiQn376CYCwsDBeeumlK/bPK4vFQkBAANWqVSM1NbVQjinOKTU1lc2bN3P77bfrT7MCOO+YcHNz0xlZESm1TA+zn3zyCWPHjmXu3Lm0bNmSqKgoOnXqxP79+6lWrVq2/ps2baJv3760bt0aT09Ppk2bRseOHfn5558JzHrx4AKwWq368C/jrFYraWlpeHp6OlVwkaKjMSEiUvKYPulrxowZDB06lMGDB9OgQQPmzp2Ll5cX7777bo79Fy1axPDhwwkNDaV+/fq88847ZGRksH79+mKuXERERETMZuqZ2ZSUFHbt2sX48ePtbS4uLrRv355t27bl6hgXL14kNTWVKlWq5Hh/cnIyycnJ9u3ExETA9ufCzGkEWX+KgMaFZKcxITnRuJCsNCYKLi+vnalh9tSpU6Snp+Pv7+/Q7u/vz759+3J1jKeffpoaNWrQvn37HO+fOnUqkydPzta+Zs0avLy8HNrWrl2by8qlLNG4kKw0JiQnGheSlcZE/uVlmVTT58wWxMsvv8zHH3/Mpk2b8PT0zLHP+PHjGTt2rH373Llz1KxZk1atWlGhQgXAlv43btxIu3btNA9O7DQuJCuNCcmJxoVkpTFRcOfPnwdyd8EXU8Osr68vVquVEydOOLSfOHHimkvIvPbaa7z88susW7eOJk2aXLGfh4cHHh4e9u3MaQa1atUqQOUiIiIiUtTOnz9PxYoVr9rH1DDr7u5OWFgY69evp0ePHgD2L3ONHDnyivu98sorvPjii6xevZrmzZvn6TFr1KjBkSNHqFChgn2dyMTERIKDgzly5Ag+Pj75fj5F6eabb2bHjh0l9vj52T8v++Sm77X6XOn+K7WX9XFRGMcuynFRlGPiSveV9TFRGMfXZ4U59Fmhz4qsSvpnRfPmzdmwYQM1atS4Zl/TpxmMHTuWgQMH0rx5c1q0aEFUVBQXLlxg8ODBAAwYMIDAwECmTp0KwLRp05gwYQKLFy8mJCSE48ePA+Dt7Y23t/c1H8/FxYWgoKAc7/Px8Smxg85qtRZpbQU9fn72z8s+uel7rT5Xuv9a+5XVcVEYxy7KcVGUY+Ja95XVMVEYx9dnhTn0WaHPiqxK+meFq6vrFfNatr75fpRCcu+99/LXX38xYcIEjh8/TmhoKKtWrbJ/Kezw4cMOl42cM2cOKSkp9O7d2+E4EydOZNKkScVZerEaMWJEiT5+fvbPyz656XutPle6v6hf26JUlLUXxrGLclwU5ZjISx0ljT4r9FmRE31WFKyPPiuK//h52d9i5GZmbSmXmJhIxYoVOXfuXIn9F5QUP40LyUpjQnKicSFZaUwUL9MvmlASeHh4MHHiRIcvioloXEhWGhOSE40LyUpjonjpzKyIiIiIOC2dmRURERERp6UwKyIiIiJOS2FWRERERJyWwqyIiIiIOC2FWRERERFxWgqzeXD27FmaN29OaGgojRo1Yt68eWaXJCXAkSNHCA8Pp0GDBjRp0oQlS5aYXZKUAD179qRy5crZLvAiZcsXX3xBvXr1uP7663nnnXfMLkdKCH0+FC4tzZUH6enpJCcn4+XlxYULF2jUqBE7d+6katWqZpcmJkpISODEiROEhoZy/PhxwsLC+O233yhfvrzZpYmJNm3axPnz53n//feJjo42uxwxQVpaGg0aNGDjxo1UrFiRsLAwvv32W/0/Q/T5UMh0ZjYPrFYrXl5eACQnJ2MYBvq3gAQEBBAaGgpA9erV8fX15cyZM+YWJaYLDw+nQoUKZpchJtq+fTsNGzYkMDAQb29vOnfuzJo1a8wuS0oAfT4UrlIVZjdv3kxERAQ1atTAYrGwbNmybH1mzZpFSEgInp6etGzZku3bt+fpMc6ePUvTpk0JCgriySefxNfXt5Cql6JSHOMi065du0hPTyc4OLiAVUtRKs4xIc6roOPk2LFjBAYG2rcDAwOJj48vjtKlCOnzo+QpVWH2woULNG3alFmzZuV4/yeffMLYsWOZOHEiu3fvpmnTpnTq1ImTJ0/a+2TOh816O3bsGACVKlXihx9+4NChQyxevJgTJ04Uy3OT/CuOcQFw5swZBgwYwNtvv13kz0kKprjGhDi3whgnUvpoXJRARikFGJ999plDW4sWLYwRI0bYt9PT040aNWoYU6dOzddjPProo8aSJUsKUqYUs6IaF5cuXTLatGljLFy4sLBKlWJSlJ8VGzduNHr16lUYZYrJ8jNOvvnmG6NHjx72+0eNGmUsWrSoWOqV4lGQzw99PhSeUnVm9mpSUlLYtWsX7du3t7e5uLjQvn17tm3blqtjnDhxgvPnzwNw7tw5Nm/eTL169YqkXikehTEuDMNg0KBB3HHHHTzwwANFVaoUk8IYE1L65WactGjRgp9++on4+HiSkpL46quv6NSpk1klSzHQ54c5XM0uoLicOnWK9PR0/P39Hdr9/f3Zt29fro7x559/8vDDD9u/+PXYY4/RuHHjoihXiklhjItvvvmGTz75hCZNmtjnTn3wwQcaG06qMMYEQPv27fnhhx+4cOECQUFBLFmyhFatWhV2uWKS3IwTV1dXpk+fTrt27cjIyOCpp57SSgalXG4/P/T5ULjKTJgtDC1atCA2NtbsMqSEue2228jIyDC7DClh1q1bZ3YJUgJ069aNbt26mV2GlDD6fChcZWaaga+vL1arNdsXtk6cOEH16tVNqkrMpnEhWWlMSG5onEhONC7MUWbCrLu7O2FhYaxfv97elpGRwfr163VqvwzTuJCsNCYkNzROJCcaF+YoVdMMkpKSOHDggH370KFDxMbGUqVKFWrWrMnYsWMZOHAgzZs3p0WLFkRFRXHhwgUGDx5sYtVS1DQuJCuNCckNjRPJicZFCWTyagqFauPGjQaQ7TZw4EB7nzfffNOoWbOm4e7ubrRo0cL47rvvzCtYioXGhWSlMSG5oXEiOdG4KHkshqHrsYqIiIiIcyozc2ZFREREpPRRmBURERERp6UwKyIiIiJOS2FWRERERJyWwqyIiIiIOC2FWRERERFxWgqzIiIiIuK0FGZFRERExGkpzIqIiIiI01KYFREpZeLi4rBYLMTGxppdiohIkVOYFRERERGnpTArIlLChYeH89hjjzF69GgqV66Mv78/8+bN48KFCwwePJgKFSpQt25dvvrqK7NLFREpdgqzIiJO4P3338fX15ft27fz2GOP8eijj9KnTx9at27N7t276dixIw888AAXL140u1QRkWJlMQzDMLsIERG5svDwcNLT09myZQsA6enpVKxYkcjISBYuXAjA8ePHCQgIYNu2bVSvXp1atWqxZ88eQkNDTaxcRKTo6cysiIgTaNKkif13q9VK1apVady4sb3N398fgJMnTxZ7bSIiZlKYFRFxAm5ubg7bFovFoc1isQCQkZFRrHWJiJhNYVZEREREnJar2QWIiEjR2L9/f7a2hg0bZjvLKyLizBRmRURKqfvuuy9b25EjRwgKCjKhGhGRoqHVDERERETEaWnOrIiIiIg4LYVZEREREXFaCrMiIiIi4rQUZkVERETEaSnMioiIiIjTUpgVEREREaelMCsiIiIiTkthVkRERESclsKsiIiIiDgthVkRERERcVoKsyIiIiLitBRmRURERMRp/T+3gDu/1GVhEAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "a:1.5813654218443765\n", "b:0.066562872159159\n", "c:-0.05001010137004584\n", "[1.5683121854901692 1.4190675485932567 1.2840254166877414\n", " 1.2840254166877414 1.1618342427282835 1.051271096376024 1.0\n", " 0.9512294245007141 0.8607079764250575 0.8187307530779817\n", " 0.7633794943368535 0.7046880897187137 0.6907343306373546\n", " 0.6376281516217732 0.5769498103804868 0.5488116360940266\n", " 0.4965853037914094 0.4723665527410147 0.4274149319487268\n", " 0.36787944117144233 0.36787944117144233 0.33287108369807966\n", " 0.301194211912202 0.2865047968601901 0.27253179303401265\n", " 0.2592402606458916]\n" ] } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy.optimize import curve_fit\n", "\n", "x_data = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,17,18,19,20,21,22,23,24,25])\n", "\n", "f_data = np.array([7.45,7.35,7.25,7.25,7.15,7.05,7.00,6.95,6.85,6.80,6.73,6.65,6.63,6.55,6.45,6.40,6.30,6.25,6.15,6.00,6.00,5.90,5.80,5.75,5.70,5.65])\n", "\n", "def n_data(f_data):\n", " return np.exp(np.array(f_data) - 7)\n", "\n", "y_data = n_data(f_data)\n", "\n", "def exp_decay(x, a, b, c):\n", " return a * np.exp(-b * x) + c\n", "\n", "params, covariance = curve_fit(exp_decay, x_data, y_data, p0=(1, 0.1, 0))\n", "\n", "a, b, c = params\n", "\n", "x_fit = np.linspace(0, 15, 10000)\n", "y_fit = exp_decay(x_fit, a, b, c)\n", "\n", "plt.figure(figsize=(8, 6))\n", "plt.scatter(x_data, y_data, color='blue', label='Data Points')\n", "plt.plot(x_fit, y_fit, color='black', label=f'Fitted Curve: $y = {a:.2f}e^{{-{b:.2f}x}} + {c:.2f}$')\n", "plt.xlabel('mL')\n", "plt.xscale('log')\n", "plt.ylabel('pH')\n", "plt.title('Exponential Decay Fitting for pH Data')\n", "plt.legend()\n", "plt.grid(True)\n", "plt.show()\n", "\n", "print(f\"a:{a}\\nb:{b}\\nc:{c}\")\n", "\n", "print(y_data.astype(list))\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 2 }