\documentclass{article} \usepackage[fleqn]{amsmath} \usepackage{amssymb} \usepackage{hyperref} \usepackage{url} \usepackage{graphicx} \usepackage{geometry} \usepackage{babel} \usepackage{enumitem} \usepackage{parskip} \usepackage{chemfig} \usepackage{pdfpages} \usepackage{xcolor} \usepackage{tikz} \usepackage{fancybox} \usepackage{makecell} \usepackage{pgfplots} \usepackage{soul} \usepackage{ulem} \usepackage{wrapfig} \usepackage{subcaption} \usepackage[T1]{fontenc} \usetikzlibrary{decorations.pathreplacing} \pgfplotsset{compat=1.17} \geometry{ a4paper, total={170mm, 257mm}, left=20mm, top=20mm } \hypersetup{ colorlinks=true, linkcolor=black, urlcolor=blue, pdftitle={Exam 2023} } \newcommand{\figbox}[1]{ \begin{figure*}[ht!] \begin{center} \fbox{#1} \end{center} \end{figure*} } % === TEXT === \title{\textbf{Maths refreshing course - Exam 2023 \\ HSLU, Semester 1}} \author{Matteo Frongillo} \begin{document} \maketitle \section*{1a)} \(x^4 - 24x^2 + 144 = (x^2 - 12)^2\) \section*{1b)} \(8t^6 + 27b^3 = 2^3t^{3 \cdot 2} + 3^3 \cdot b^3 = (2x^2)^3 + (3y)^3\) (Unsure of next steps) \section*{2a, b)} Unclear \section*{3a)} \((t-5)^2(t+k+k^2)\\ = (t^2 - 10t + 25)(k^2 + k + t)\\ = t^2k^2+t^2k+t^3-10tk^2-10tk^2-10t^2+25k^2+25k+25t\\ = t^3+t^2k^2-10tk^2+t^2k-10t^2k-10t^2+25k^2-10tk+25k+25t \) \section*{3b)} \((x+y+2z)^2 = x^2+xy+2xz+yx+y^2+2yz+2zx+4z^2 = x^2+y^2+4z^2+2xy+4xz+4yz\) \section*{4)} \(4x^3-4x^2-11x+6=0\) \[ 2 \hspace{.25cm} \begin{array}{rrr|r} +4 & -4 & -11 & +6 \\ & +8 & +8 & -6 \\ \hline +4 & +4 & -3 & 0 \end{array} \Rightarrow x_1 = 2 \] \hspace{2.5cm}$\Downarrow$\\ \phantom{} \hspace{1.3cm}\(4x^2+4x-3=0 \rightarrow x_{2,3}= \frac{-4 \mp \sqrt{16+48}}{8}= \frac{-4 \mp 8}{8} \Rightarrow x_{2,3} \in \left\{-\frac{3}{2}, \frac{1}{2}\right\}\) Solution: \(x \in \left\{-\frac{3}{2}, \frac{1}{2}, 2\right\}\) \section*{5a)} \(kx^2+(k-1)x+\frac{1}{4}=0 \rightarrow \Delta < 0\) \(a=k,\ b=k-1,\ c=\frac{1}{4}\) \(\Rightarrow (k-1)^2-4 \cdot k \cdot \frac{1}{4} = k^2-2k+1-k = k^2-3k+1\) \(\Rightarrow k^2-3k+1<0 \Rightarrow k_{1,2}=\frac{3 \mp \sqrt{9-4}}{2}\) \(k_1=\frac{3-\sqrt{5}}{2}; \quad k_2=\frac{3+\sqrt{5}}{2} \Rightarrow \text{The equation has no real solution in the interval } \frac{3-\sqrt{5}}{2} < k < \frac{3+\sqrt{5}}{2}\) \section*{5b)} \(2x^2+x+\frac{1}{4}=0 \rightarrow \Delta=\mp \sqrt{1-2} \rightarrow \Delta < 0 \rightarrow x \in \left\{\right\}\) \section*{6)} \(2x^2 - 2x +2\) Simmetry axis: \(x=\frac{-b}{2a}=\frac{2}{4}=\frac{1}{2}\) Delta (check for intersections with abscissae): \(b^2 - 4ac = 4-16 = -12 \rightarrow \Delta < 0 \rightarrow\) No intersection Vertex: \((V_x, V_y) = \left(\frac{-b}{2a}, f(V_x)\right)= \left(\frac{1}{2}, \frac{3}{2}\right)\) Points: \vspace*{-0.5cm} \begin{center} \[\begin{array}{c|c} x & y \\ \hline 0 & 2 \\ \frac{3}{2} & \frac{7}{2} \end{array}\] \end{center} Plot: \begin{center} \begin{tikzpicture} \begin{axis}[ axis lines=middle, xlabel={$x$}, ylabel={$y$}, xmin=-.5, xmax=1.5, ymin=0, ymax=4, grid=both, width=15cm, height=13cm, enlargelimits, samples=100, domain=-1:2, xtick={-1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5} ] \addplot[blue, thick, domain=-1:2] {2*x^2 - 2*x + 2}; \addplot[mark=*, mark size=2pt] coordinates {(0, 2)} node[above right] {$(0, 2)$}; \addplot[mark=*, mark size=2pt] coordinates {(1, 2)} node[above left] {$(1, 2)$}; \addplot[mark=*, mark size=2pt] coordinates {(0.5, 1.5)} node[below right] {V$\left(\frac{1}{2}, \frac{3}{2}\right)$}; \addplot[mark=*, mark size=2pt] coordinates {(-0.5, 3.5)} node[above right] {$\left(-\frac{1}{2}, \frac{7}{2}\right)$}; \addplot[mark=*, mark size=2pt] coordinates {(1.5, 3.5)} node[above left] {$(\frac{3}{2}, \frac{7}{2})$}; \draw[dashed, red] (axis cs:0.5,0) -- (axis cs:0.5,4) node[above] {\large Simmetry axis}; \end{axis} \end{tikzpicture} \end{center} \end{document}