\documentclass{article} \usepackage[fleqn]{amsmath} \usepackage{amssymb} \usepackage{hyperref} \usepackage{url} \usepackage{graphicx} \usepackage{geometry} \usepackage{babel} \usepackage{enumitem} \usepackage{parskip} \usepackage{chemfig} \usepackage{pdfpages} \usepackage{xcolor} \usepackage{tikz} \usepackage{fancybox} \usepackage{makecell} \usepackage{pgfplots} \usepackage{soul} \usepackage{ulem} \usepackage{wrapfig} \usepackage{subcaption} \usepackage[T1]{fontenc} \usepackage{pgfplots} \usepackage{esvect} \usetikzlibrary{arrows} \usetikzlibrary{decorations.pathreplacing} \pgfplotsset{compat=1.17} \geometry{ a4paper, total={170mm, 257mm}, left=20mm, top=20mm } \hypersetup{ colorlinks=true, linkcolor=black, urlcolor=blue, pdftitle={Math refresher course} } \newcommand{\figbox}[1]{ \begin{figure*}[ht!] \begin{center} \fbox{#1} \end{center} \end{figure*} } \newcommand{\wrapfill}{ \par \ifnum \value{WF@wrappedlines} > 0 \addtocounter{WF@wrappedlines}{-1}% \null\vspace{ \arabic{WF@wrappedlines} \baselineskip } \WFclear \fi \phantom{} } \newcommand{\difference}{\,\backslash\,} % === TEXT === \title{\textbf{Maths refresher course \\ HSLU, Semester 1}} \author{Matteo Frongillo} \begin{document} \maketitle \tableofcontents \pagebreak \part{Lesson 1} \section{Numerical sets} \begin{itemize} \item $\mathbb{N} := \text{Natural numbers (including 0)}$ \item $\mathbb{Z} := \text{Integer numbers}$ \item $\mathbb{Q} := \text{Rational numbers}$ \item $\mathbb{R} := \text{Real numbers}$ \end{itemize} \underline{Notation}: The ``$^*$'' symbol means that the set does not include 0. We have that: \[ \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \] \section{Prime numbers} A prime number is a number \( n \in \mathbb{N} \setminus \{0,1\} \) such that, for every divisor \( d \in \mathbb{N} \), if \( d \mid n \), then \( d = 1 \) or \( d = n \). \figbox{$n \in \mathbb{N} \setminus \{0,1\} \text{ is prime} \iff \forall d \in \mathbb{N}, (d \mid n) \Rightarrow (d = 1 \ \text{or} \ d = n)$} \section{Positive powers} Let $a \in \mathbb{R}, n \in \mathbb{R}^*$ and ${a} \subset \mathbb{R}$, then \figbox{$ a^{1} := a \quad | \quad a^n = \underbrace{a \cdot a \cdot ... \cdot a}_{n \text{ times}}$ } \subsection{Property 1} Let $a, b \in \mathbb{R},\ n,m \in \mathbb{N}$, then \\ \figbox{$a^n \cdot a^m = a^{n+m}$} \subsection{Property 2} Let $a,b \in \mathbb{R},\ n \in \mathbb{N}$, then \\ \figbox{$(a \cdot b)^n = a^n \cdot b^n$} \underline{Notation}: The power $a^n$, $a$ is the base and $n$ is the exponent. \subsection{Property 3} Let $a \in \mathbb{R},\ m,n \in \mathbb{N}^*$, then \\ \figbox{$(a^n)^m = a^{n \cdot m}$, which is $\neq a^{(n^m)}$} \newpage \section{Fractions} \underline{Notation 1}: $a \cdot b = a \times b = ab$ \quad | \quad $\frac{a}{b} = a \div b = a : b$ \underline{Notation 2}: ``$a$'' is called numerator, ``$b$'' is called denominator. \underline{Notation 3}: $\frac{a}{b},\ a,b \in \mathbb{R},\ b \neq 0$ \subsection{Property 1} Let $a, b \in \mathbb{R}^*$ and $c, d \in \mathbb{R}$, then\\ \figbox{\large $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$} \subsection{Property 2} Let $a, b \in \mathbb{R}^*$ and $c, d \in \mathbb{R}$, then\\ \figbox{\large $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$} \subsection{Property 3} Let $a, b \in \mathbb{R}^*$ and $c, d \in \mathbb{R}$, then\\ \figbox{\large $\frac{a}{b} \pm \frac{c}{d} = \frac{a \cdot d \pm c \cdot b}{b \cdot d}$} \section{Negative powers} \subsection{Definition} \figbox{$\forall a \in \mathbb{R}^*$; \; $a^{-1} := \frac{1}{a} $} \subsection{Property 4} Let $\forall n \in \mathbb{N},\ \forall a \in \mathbb{R}$, then\\ \figbox{$a^{-n} = \left(\frac{1}{a}\right)^n$} This property implies that $\forall z \in \mathbb{Z},\ \forall a \in \mathbb{R},\ z \neq 0$\\ We can compute $a^z$ \subsection{Property 5} Let $\forall a \in \mathbb{R},\ a \neq 0,\ \forall n,m \in \mathbb{Z}$, then\\ \figbox{$\frac{a^n}{a^m} = a^{n-m}$} \newpage \underline{Consequences}: \begin{enumerate} \item Properties 1, 2 and 3 also hold for integer exponents: \begin{itemize} \item $\forall a \in \mathbb{R},\ \forall n,m \in \mathbb{Z} \Rightarrow a^n \cdot a^m = a^{n+m}$ \item $\forall b \in \mathbb{R},\ (a \cdot b)^n = a^n \cdot b^n$ \item $(a^n)^m = a^{n \cdot m}$ \end{itemize} \item $\forall a \in \mathbb{R}^*,\ a^0 = a^{1-1} = \frac{a^1}{a^1} = 1 \Rightarrow a^0 = 1$ \end{enumerate} \section{Fractions and percentages (and back)} $\alpha \in \mathbb{R},\ n \% \text{ of } \alpha \Longleftrightarrow \frac{n}{100} \cdot \alpha$ \newpage \part{Lesson 2} \section{Symbols} Let $a,b \in \mathbb{R}$, then \begin{itemize}[label=--] \item $a=b \rightarrow$ equality; \item $a \neq b \rightarrow$ inequality ($a$ is not equal to $b$); \item $ab \rightarrow$ greater than ($a$ is strictly greater than $b$); \item $a\geq b \rightarrow$ greater than or equal to ($a$ is greater than or equal to $b$). \end{itemize} \underline{Example}: $x \in \mathbb{R},\ x \geq 2 \rightarrow 2 \leq x < \infty$ \section{Brackets} \begin{align*} &\left(\phantom{-}\right) \text{ \ Parenthesis (round brackets)}\\ &\left[\phantom{-}\right] \text{ \, Square brackets}\\ &\left\{\phantom{-}\right\} \text{ Braces} \end{align*} \section{Latin notations} \begin{itemize} \item e.g. = for example; \item i.e. = that is / that implies; \item Q.E.D. ($\Box$)= quod erat demonstrandum (we finally prove it). \end{itemize} \section{The real line} \vspace*{.5cm} \begin{center} \begin{tikzpicture} \draw[->] (0,0) -- (6,0); \draw[<-] (-6,0) -- (0,0); \foreach \x/\label in {-5/{$-\pi$}, -4/{$-e$}, -3/{$-2$}, -2/{$-1$}, -1/{$-\frac{1}{2}$}, 0/{$0$}, 1/{$\frac{1}{2}$}, 2/{$1$}, 3/{$2$}, 4/{$e$}, 5/{$\pi$}} { \draw (\x,0.1) -- (\x,-0.1) node[below] {\label}; } \node[below] at (-6,-0.1) {$-\infty$}; \node[below] at (6,-0.1) {$+\infty$}; \end{tikzpicture} \end{center} \subsection{Exercises} 1) $\forall a,b,x \in \mathbb{R},\ a \leq x \leq b$ \begin{center} \begin{tikzpicture} %number line \draw[-] (-4,0) -- (3,0); \draw[thick] (-3,-0.2) -- (-3,0.2); \draw[thick] (2,-0.2) -- (2,0.2); %interval \draw[thick] (-3,-1) -- (2,-1); \draw[thick] (-3,0) -- (-3,-1); \draw[thick] (2,0) -- (2,-1); \filldraw[black] (-3,-1) circle (2pt); \filldraw[black] (2,-1) circle (2pt); %points \node[above] at (-3,0.2) {a}; \node[above] at (2,0.2) {b}; %arrow \draw[->] (3,0) -- (3.5,0); %area \filldraw [fill=red, draw=black, opacity=0.3] (-3,0) rectangle (2,-1); \end{tikzpicture} \end{center} 2) $\forall x \in \mathbb{R},\ x \in\ ]-2,-1]\ \cup\ ] \frac{3}{2}, +\infty[$ \begin{center} \begin{tikzpicture} %number line \draw[-] (-3,0) -- (4,0); \draw[thick] (-2,-1) -- (-2,0.2); \draw[thick] (1,-1) -- (1,0.2); \draw[thick] (1.5,-0.95) -- (1.5,0.2); %intervals \draw[thick] (-2,-1) -- (1,-1); \filldraw[black] (-2,-1) circle (2pt); \filldraw[black] (1,-1) circle (2pt); \draw[thick] (1.55,-1) -- (4,-1); \draw[thick, dashed] (4,-1) -- (4.5,-1); \draw[thick] (1.5,-1) circle (2pt); %points \node[above] at (-2,0.2) {-2}; \node[above] at (1,0.2) {1}; \node[above] at (1.5,0.2) {\(\frac{3}{2}\)}; %arrow \draw[->] (4,0) -- (4.5,0); %area \filldraw [fill=red, draw=black, opacity=0.3] (-2,0) rectangle (1,-1); \filldraw [fill=red, draw=black, opacity=0.3] (1.5,0) rectangle (4.5,-1); \end{tikzpicture} \end{center} \vspace*{.5cm} \underline{Notation}: The union of two or more intervals where $x \in \mathbb{R}$ is denoted by the symbol $\cup$. \newpage \section{Properties of real numbers} \subsection{Property 1 - Closure under ``$+$'' and ``$\cdot$''} $\forall x,y \in \mathbb{R}\\ x+y \in \mathbb{R}\\ x \cdot y \in \mathbb{R}$ \underline{Remark}: for $\forall x \in \mathbb{Z}$, closure does not hold for division. \subsection{Property 2 - Commutativity} $\forall x,y \in \mathbb{R}\\ x+y=y+x\\ x \cdot y=y \cdot x$ \underline{Remark}: commutativity does not hold for divisions and subtractions. \subsection{Property 3 - Associative} $\forall x,y,z \in \mathbb{R}\\ x+(y+z) = (x+y)+z\\ x \cdot (y\cdot z)=(x\cdot y)\cdot z$ \underline{Remark}: associativity does not hold for divisions and subtractions. \subsection{Property 4 - Distributive} $\forall x,y,z \in \mathbb{R}\\ x(y \pm z)=xy \pm xz$ \subsection{Property 5 - Identity} $\forall x \in \mathbb{R}$ \begin{enumerate}[label=\alph*)] \item $0+x=x$ \item $1 \cdot x=x$ \end{enumerate} \underline{Remark}: $\forall x \in \mathbb{R},\ x \cdot 0=0$ is \underline{not} an identity property. \subsection{Property 6 - Inverses and opposites} $\forall x \in \mathbb{R}$ \begin{enumerate}[label=\alph*)] \item $x+(-x)=0$ (additive inverse) \item when $x \neq 0,\ x \cdot \frac{1}{x}=1$ (multiplicative inverse or opposite) \end{enumerate} \underline{Remark 1}: $\forall x \in \mathbb{N}$ does not exist either inverse nor opposite. \underline{Remark 2}: $\forall x \in \mathbb{Z}$ has inverses, but not opposites. \section{The order of operations} \begin{enumerate} \item Perform all operations inside grouping symbols beginning with the innermost set:\\ $\left(\phantom{-}\right)$ inside brackets operations; \item Perform all exponential operations as you come to them, moving left-to-right:\\ $x^a$; \item Perform all multiplications and divisions as you come to them, moving left-to-right:\\ ``$\cdot$'' and ``$\div$''; \item Perform all additions and subtractions as you come to them, moving left-to-right:\\ ``$+$'' and ``$-$''; \item When the level of priority is the same (e.g. multiplications and divisions) solve them as you come to them. \end{enumerate} \section{Signed numbers} A number is denoted as positive if it is directly preceded by a $+$ sign or no sign at all.\\ A number is denoted as negative if it is directly preceded by a $-$ sign. $\forall x \in \mathbb{R}$ \[-(-x)=x\\ +(-x)=-x\\ +(+x)=x\\ -(+x)=-x\] \section{Absolute value} Let $x \in \mathbb{R}$, then $|x|=$ $\begin{cases} x \qquad \text{if } x \geq 0\\ -x \;\quad \text{if } x < 0 \end{cases}$ \subsection{Property} $\forall x \in \mathbb{R}\\ |x|>0 \quad \text{if } y \neq 0\\ |x|=0 \quad \text{if } x=0$ \newpage \part{Lesson 3} \section{Polynomials} \subsection{Terms and factors} \subsubsection{Variables} A variable is a letter or a symbol that can assume any value. \figbox{$\forall x \in \mathbb{R}$}\\ The most common variables are $a$, $b$, $x$, $y$. When we have an equality $y=x+a$, $\forall x \in \mathbb{R}$, $x$ can assume any value in the set of real numbers ($x$ is an independent variable), while $y$ strictly depends on the value that we decide to give to x. \underline{Notice}: we can write $y=x+a$ as $y-a=x$, changing which variable is independent and which is dependent. \subsubsection{Sets} Consider the set $A=\left[a,b\right]$, where $a \leq b$. Then: \figbox{$\forall x \in A, \; a \leq x \leq b$} \subsection{Expressions, terms and factors} \subsubsection{Expressions} An expression is any formula containing numbers, variables, operations, and brackets. \figbox{$y=ax^2+bx\cdot c$} \subsubsection{Terms} A term is any part of the expression separated by ``$+$'' or ``$-$''. \figbox{$y = \underbrace{ax^2}_{term} + \underbrace{bx \cdot c}_{term}$} \subsubsection{Factors} Each term can be split into a product of factors. \figbox{$x \cdot y \cdot (a-b) \cdot 24 = x \cdot y \cdot (a-b) \cdot 2 \cdot 2 \cdot 2 \cdot 3$} \underline{Notice}: the process of splitting a term into several factors is called ``factorization''.\\ \phantom{} \hspace{1cm} The goal of a factorization is to factorize an expression as much as possible. \newpage \section{Common factor} Any expression made of terms is composed of several factors. \figbox{$x^2+x^3+x= x(x+x^2+1),\ \forall x \in \mathbb{R}$} \section{Notable products} \begin{itemize} \item $(a+b)^2=a^2+2ab+b^2$ (square of a binomial); \item $(a-b)^2=a^2-2ab+b^2$ (square of a binomial); \item $(a-b)(a+b)=a^2-b^2$ (difference of squares); \item $(a+b)(a^2-ab+b^2)=a^3+a^3$ (sum of cubes); \item $(a-b)(a^2+ab+b^3)=a^3-b^3$ (difference of cubes). \end{itemize} \underline{Remark}: notable products are useful to factorize expressions when we don't know a common factor. \section{Classification of polynomials} Polynomials can be classified using two criteria: \begin{enumerate} \item the number of terms; \item the degree of the polynomial. \end{enumerate} \begin{equation} \begin{aligned} &\begin{array}{|c|c|l|c|} \hline \text { Number of Terms } & \text { Name } & \text { Example } & \text { Comment } \\ \hline \text { One } & \text { Monomial } & ax^2 & \text { Mono means ``one'' in Greek } \\ \hline \text { Two } & \text { Binomial } & ax^2-b x & \text { Bi means ``two'' in Latin } \\ \hline \text { Three } & \text { Trinomial } & ax^2-b x+c & \text { Tri means ``three'' in Greek } \\ \hline \text { Four or more } & \text { Polynomial } & a x^3-b x^2+c x-d & \text { Poly means ``many'' in Greek } \\ \hline \end{array} \end{aligned} \end{equation} \subsection{Definition} Let $n \in \mathbb{N^*}$, then a polynomial is the sum or difference of n-monomials. \subsection{Degree} The degree of a polynomial is the largest exponent of its monomials. \subsubsection{Monomials} The degree of a monomial is the sum of all the exponents of all the variables. $p(x)=x^2+1 \rightarrow$ the degree is 2.\\ $\forall x \in \mathbb{R},\ p(0)=0^2+1=1 \rightarrow$ 1 is a polynomial with degree 0. \subsubsection{Polynomials} The degree of a polynomial is the highest of all the degrees of all the monomials which compose the polynomial. $p(x)=x^3+1+x^5+x^21 \rightarrow \deg(p(x))=21$\\ $q(x)=12 \underbrace{abcd}_{\deg=4} - 31x^3+2xy \rightarrow \deg(q(x))=4$ \underline{Notation}: Let $f(x)=ax^2+bx+c$, $a$ and $b$ are called coefficient.\\ The coefficient of the monomial with highest coefficient is called \textbf{leading coefficient}. \newpage \part{Lesson 4} \section{Operations between polynomials} \subsection{Polynomials with one independent variable} The order of the monomials is not important, but it is preferable to write the highest degree monomials in decreasing order. \figbox{$p(x)=ax^2-bx+c$} \subsubsection{Sum} We have to sum all the monomials of the same degree. $p(x)=x^2+x-1\\ q(x)=5-x+x^5-x^2$ $p(x)+q(x)=x^2+x-1+5-x+x^5-x^2=x^5+4$ \underline{Definition}: in a polynomial with one variable, monomials of same degree are called \textbf{similar terms}. \underline{Remark}: when there is a difference between polynomials, the minus MUST be distributed throughout the next monomial. \subsubsection{Multiplications} We have to multiply the factors with each other using the distributive property. $p(x)=(x-1)\\ q(x)=(x^2+2x)$ $p(x)\cdot q(x)=(x-1)(x^2+2x)=x^3+2x^2-x^2-2x=x^3+x^2-2x=x(x^2+x-2)$ \subsection{Polynomials with two or more variables} \subsubsection{Sum} $p(x)=ab+a^2b\\ q(x)=4ab-3ab^2$ $p(x)+q(x)=ab+a^2b+4ab-3ab^2=a^2b-3ab^2+5ab=ab(a-b+5)$ \underline{Remark}: $5a^3b^4+7a^3b^4=12a^3b^4$, but with $5a^3b^4+7a^4b^3$ we can't go further with the sum. \section{Equations} An equation is a formula given by the equality of expressions. \underline{Symbol notations}: \begin{itemize} \item $\exists =$ there exist(s); \item $\nexists =$ there does not exists; \item $\exists! =$ it exists and it is unique; \item $:$ or $| =$ such that. \end{itemize} Equations are the main topic, then we have \begin{itemize} \item Identities; \item Contradictions; \item Conditional equations. \end{itemize} \newpage \subsection{Identities} An identity is an equality that holds true regardless of the values chosen for its variables: \figbox{$\forall x \in \mathbb{R},\ \exists y \in \mathbb{R}\ |\ f(x,y)=0$}\\ e.g. \begin{itemize} \item $1=1$; \item $x-1=-1+x$; \item $\sin^2(x)+\cos^2(x)=1$. \end{itemize} \subsection{Contradictions} A contradiction occurs when we get a statement $p$, such that $p$ is true and its negation $\sim p$ is also true: \figbox{$\forall x \in \mathbb{R}, \ \neg (\exists y \in \mathbb{R}\ |\ f(x, y) = 0)$}\\ e.g. \begin{itemize} \item $0=1$, false; \item $x^2=-1$ it is always positive or zero; \item $|a|=-3$ it is always positive or zero; \item $\sqrt{-(x^2+1)}=1$ it is never defined ($\nexists $). \end{itemize} \subsection{Conditional equations} In general, we want to find a solution for each equation, i.e. all the real numbers that, when they replace a variable inside the equation, give an identity: \figbox{$\forall x \in \mathbb{R}, \ (x > 0 \Rightarrow \exists y \in \mathbb{R}\ |\ f(x, y) = 0)$}\\ e.g. \begin{itemize} \item $x=1$; \item $x+y=3$; \item $\sin(\alpha)=0.5$. \end{itemize} \section{Fundamental theorem of algebra} Let $p(x)$ be a polynomial with one variable and real coefficients.\\ Assume that $\deg(p(x))=n \in \mathbb{N}$, then: \figbox{$p(x)=0$ has at most $n$ solutions} \section{Linear equations with one variable} $p(x)=q(x)$ where $\deg(0,(x))=1$ \subsection{Simple tools} \subsubsection{Tool 1} $a,b \in \mathbb{R},\ x+a=b$, let's isolate the variable $x$: $x-a-a=b-a \Rightarrow x=b-a$ \subsubsection{Tool 2} $a,b \in \mathbb{R},\ ax=b$, let's isolate the variable $x$: $\frac{ax}{a}=\frac{b}{a} \Rightarrow x=\frac{b}{a}$ \newpage \section{Linear inequalities with one variable} The inequality is a relation between two or more sets.\\ Let $a,b,x \in \mathbb{R},\ ax$, then: \figbox{$a-\frac{b}{a}$} \section{Equations and inequalities with absolute values} To solve absolute values we need to consider two cases.\\ Let's take this equation: $|x+2|=-x+4$, then \figbox{$ \begin{cases} \text{case 1: } x+2 = -x+4 \Rightarrow 2x = 2 \Rightarrow x_1 = 1\\ \text{case 2: } -x-2 = -x+4 \Rightarrow -2 = 4 \ (\text{contradiction}) \end{cases} \Longrightarrow \text{Sol: } x= \begin{cases} 1\ &\text{ if }\ x+2 \geq 0\\ \text{no solution} &\text{ if }\ x+2 < 0 \end{cases}$ } \newpage \part{Lesson 5} \section{Division of polynomials} \subsection{Division algorithm for polynomials by monomials} Let $f(x)$ be a polynomial and $g(x)$ a monomial such that $g(x) \neq 0$. Consider the rational expression $\frac{f(x)}{g(x)}$, then: \begin{center} \begin{tikzpicture} %vline \draw[thick] (0,0) -- (0,3.7); %hlines \draw[thick] (0,3) -- (3.5,3); \draw[thick] (0,2.5) -- (-3.5,2.5); \draw[thick] (0,0.48) -- (-3,0.48); %dots \draw[line width=0.4mm, loosely dotted] (-1.6,2.3) -- (-1.6,0.6); %nodes \node at (1.15,3.3) {Divisor $g(x)$}; \node at (-1.3,2.8) {Dividend $f(x)$}; \node at (1.3,2.65) {Quotient $Q(x)$}; \node at (-1.45,0.13) {Remainder $R(x)$}; \end{tikzpicture} \end{center} \begin{itemize} \item Divide the highest degree term in $f(x)$ (the dividend) by the highest degree term in $g(x)$ (the divisor). This gives the first partial quotient $q_1(x)$. \item Multiply the partial quotient $R_1(x)$ by the entire divisor $g(x)$. This product represents the part of the dividend that can be "cancelled" in this step. \item Subtract the product obtained in step 2 from the original dividend $f(x)$. This subtraction gives a new polynomial, often called the remainder $R_1(x)$, which is of a lower degree than the original dividend. \item Now divide the leading term of the new remainder $R_1(x)$ by the leading term of $g(x)$. This gives the next partial quotient $Q_2(x)$. \item Multiply $Q_2(x)$ by $g(x)$ and subtract it from the current remainder. This process generates a new remainder $R_2(x)$. \item Keep repeating the division, multiplication, and subtraction steps until the degree of the remainder is less than the degree of the divisor $g(x)$. At this point, you cannot continue dividing. \item The final quotient $Q(x)$ is the sum of all the partial quotients: $Q(x) = Q_1(x) + Q_2(x) + \dots + Q_n(x)$. \item The remainder $R_n(x)$ is the result after all subtractions are completed. If the remainder is zero, the division is exact. If not, the remainder is the leftover part of the division. \end{itemize}\ \underline{Tip}: When the sum of the coefficients is equal to 0, then the polynomial is always divisible by $x-1$. \section{Second degree polynomials} Let $a,b,c \in \mathbb{R}$, with $a \neq 0$, then \figbox{$ax^2+bx+c=0$} The three possible outcomes we can have when solving this 2nd-degree polynomial are: \begin{itemize} \item 2 solutions; \item 1 solution; \item 0 solutions. \end{itemize} \subsection{Quadratic formula} \figbox{$x_{1,2}=\frac{-b \mp \sqrt{\Delta}}{2a}$} \subsubsection{Discriminant of the polynomial} \figbox{$\Delta=b^2-4ac$} From the discriminant we can determine how many solutions the equation will have: \begin{itemize} \item $\Delta>0 \Rightarrow 2$ real solutions; \item $\Delta=0 \Rightarrow 1$ real solution; \item $\Delta<0 \Rightarrow 0$ real solutions (2 complex solutions). \end{itemize} \subsubsection{Evident solutions} When we have a 2nd-degree equation $(x-a)(x-b)=0$, we have two obvious solutions in $\mathbb{R}$. In this case, $x_1=a,\ x_2=b$ This factorization can be obtained using notable products. e.g. Let $x^2+4x+4=0 \Rightarrow (x+2)^2=0$, then $x=-2$. \subsection{Extraction of a root} Let $a \in \mathbb{R},\ a\geq 0$, then: \figbox{$x^2-a=0 \Rightarrow x=\pm\sqrt{a}$} \newpage \part{Lesson 6} \section{Lines and parabolas} \subsection{Cartesian diagram} \begin{center} \begin{tikzpicture} \definecolor{darkgreen}{rgb}{0.0, 0.6, 0.0} \draw[thick][->] (-2,0) -- (5,0); \draw[thick][->] (0,-2) -- (0,5); \node at (5,-.5) {x-axis}; \node at (-.7,5) {y-axis}; \draw[fill, thick] (3,0) circle (2pt); \node[below] at (3,0) {x=3}; \draw[fill, thick] (0,3) circle (2pt); \node[left] at (-.1,3) {y=3}; \draw[blue, thick] (3,0) -- (3,3); \draw[blue,thick] (0,3) -- (3,3); \draw[fill, blue, thick] (3,3) circle (2pt); \node[blue, above] at (3,3) {P(3,3)}; \node[below] at (-0.2,0) {0}; \draw[darkgreen, thick] (-2,-1) -- (4,5); \draw[fill, darkgreen, thick] (0,1) circle (2pt); \node[darkgreen, left] at (-0.1,1) {(y,q)}; \end{tikzpicture} \end{center} \subsection{Straight line} Let A and B be any two distinct points, then there is one and only one line passing through A and B. \subsection{Slope-intercept equation} Let $m,q \in \mathbb{R}$, then \figbox{$y=mx+q$} \begin{itemize} \item $m$: slope ($\tan(\alpha)$); \item $q$: vertical intercept. \end{itemize} \subsubsection{Slope} The slope of a line can be calculated with the equation \figbox{$m=\frac{y_B - y_A}{x_B - x_A} = \frac{\Delta y}{\Delta x}$} We have three different slope outcomes: \begin{itemize} \item $m>0$, the line is increasing; \item $m=0$, the line is stable; \item $m<0$, the line is decreasing. \end{itemize} \newpage \subsubsection{Drawing} \begin{center} \begin{tikzpicture} \draw[thick] (0,0) -- (5,3); \draw[fill, thick, red] (1.65,1) circle (2pt); \node[above, red] at (1.65,1) {A}; \draw[fill, thick, blue] (3.35,2) circle (2pt); \node [above, blue] at (3.35, 2) {B}; %slope \draw[thick, red] (1.65,1) -- (3.34,1); \draw[thick, blue] (3.34,2) -- (3.34,1); %braces \draw[decorate,decoration={brace,amplitude=5pt},thick] (3.54,2) -- (3.54,1); \node at (4.1,1.53) {$\Delta x$}; \draw[decorate,decoration={brace,amplitude=5pt},thick] (3.35,0.8) -- (1.65,0.8); \node at (2.5,0.4) {$\Delta y$}; \end{tikzpicture} \end{center} \subsection{Vertical lines} The more the value of m increases, the closer the line will get to the vertical, without ever reaching it. Let $c \in \mathbb{R}$, then $x=c$. Vertical lines cannot be written as a function. \section{Equation of a line} Let $m,x_A,y_A \in \mathbb{R}$ and $A(x_A, y_A)$, then \figbox{$y-y_A=m(x-x_A)$} e.g.: Find the line with $m=-1$ and $A(2,-1)$. \[ y-1=-1(x+2) \Rightarrow y=-x+1 \] \hspace{.75cm} Points: $A(2,-1);\ B(0,1)$ \begin{center} \begin{tikzpicture} \begin{axis}[ axis lines = middle, xlabel = $x$, ylabel = $y$, grid = both, xmin=-3, xmax=3, ymin=-3, ymax=3, domain=-3:3 ] \addplot[color=blue, thick] {-x + 1}; \draw[fill, red, thick] (2,-1) circle (2pt); \node[right,red] at (2,-.9) {A}; \draw[fill,red,thick] (0,1) circle (2pt); \node[right,red] at (0,1.1) {B}; \end{axis} \end{tikzpicture} \end{center} \subsection{General equation in a cartesian diagram} \figbox{$ax+by+c=0$} \underline{Remarks}: \begin{itemize} \item All the lines can be described with this kind of equation; \item When $b=0$, $a \neq 0$, then $ax=-c \Rightarrow x=\frac{-c}{a} \in \mathbb{R}$; \item When $b \neq 0$, then $y=-\frac{a}{b}x -\frac{c}{b}$, where $m=-\frac{a}{b}$ and $q=-\frac{c}{b}$. \end{itemize} \newpage \section{Vertical parabolas} \subsection{Function of parabolas} Let $a,b,c \in \mathbb{R}$, then \figbox{$y=a^2+bx+c$} \subsection{Drawing example} \vspace*{0.8cm} \begin{wrapfigure}{r}{10cm} \vspace*{-2.75cm} \begin{tikzpicture} \begin{axis}[ axis lines = middle, xlabel = $x$, ylabel = $y$, grid = both, xmin=-3.5, xmax=3.5, ymin=-1, ymax=10, domain=-3.5:3.5 ] \addplot[color=blue, thick] {x^2}; \draw[fill,red,thick] (-3,9) circle (2pt); \draw[fill,red,thick] (-2,4) circle (2pt); \draw[fill,red,thick] (-1,1) circle (2pt); \draw[fill,red,thick] (-0,0) circle (2pt); \node[red, below] at (0,0) {$(V_x, V_y)$}; \draw[fill,red,thick] (1,1) circle (2pt); \draw[fill,red,thick] (2,4) circle (2pt); \draw[fill,red,thick] (3,9) circle (2pt); \end{axis} \end{tikzpicture} \end{wrapfigure} \hspace*{2.25cm} \begin{tabular}{c|c} x & y \\ \hline -3 & 9 \\ -2 & 4 \\ -1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 4 \\ 3 & 9 \end{tabular} \vspace*{-2cm} \wrapfill \subsection{Concavity of a parabola} We have three cases: \begin{itemize} \item $a>0$, concave up; \item $a=0$, not a parabola; \item $a<0$, concave down. \end{itemize} \subsection{Vertex of a parabola} The vertex of a parabola $y=ax^2+bx+c$ is the point given by the coordinates: \figbox{$V=\left(-\frac{b}{2a},\ -\frac{\Delta}{4a}\right)$} \underline{Remarks}: we have two different cases: \begin{itemize} \item When $a>0$, the vertex is the lower point of the parabola; \item When $a<0$, the vertex is the highest point of the parabola. \end{itemize} e.g.: given $y=x^2$, find the vertex: $V=\left(-\frac{0}{2},\ -\frac{0}{4}\right) \rightarrow V(0,0)$ \underline{Alternative}: solving the $x$ coordinate $V_x$, we can sostitute the $x$ inside the given funcion $f(x)$. \newpage \section{Powers with $\mathbb{Z}$ and $\mathbb{R}$ exponents} Let $\alpha \in \mathbb{R}$ and $n \in \mathbb{N}$, then: \figbox{$\alpha^{\frac{1}{n}}=\sqrt[n]{\alpha}$} Let $m,n \in \mathbb{Z}$, then \figbox{$\alpha^{\frac{m}{n}}=\left(\alpha^\frac{1}{n}\right)^m$} Let $a,c \in \mathbb{Z};\ b,d \in \mathbb{Z}^*$ and $\lambda \in \mathbb{R} \difference \mathbb{Z}$. Then, we can approximate $\lambda$ by a fraction: \figbox{$\frac{a}{b}<\lambda<\frac{c}{d}$} \newpage \part{Lesson 7} \section{Concept of functions} Let's take any two sets $A\left\{a,b,c,d,e,f,g\right\}$ and $B\left\{a_1,b_1,c_1,d_1,e_1,f_1,g_1\right\}$. \figbox{ \hspace*{-1cm} \begin{minipage}{0.12\textwidth} \vspace*{-0.4cm} \begin{align*} f: \mathbb{R} &\longmapsto \mathbb{R} \\ x &\longmapsto mx+q \end{align*} \end{minipage} } A function is a relation between the sets $A$ and $B$, according to which we associate to each element of $A$ one and only one element of $B$: \figbox{ \begin{tikzpicture} %sets A and B \draw (0,0) ellipse (1 and 2); \draw (5,0) ellipse (1 and 2); \node at (-1.5,2.3) {$f:A$}; \node at (6,2.3) {$B$}; \draw[->] (-0.8,2.3) -- (5.7,2.3); %set A \node at (0,-1.5) {$\bullet$}; \node at (0,-1) {$\bullet$}; \node at (0,-0.5) {$\bullet$}; \node at (0,0) {$\bullet$}; \node at (0,0.5) {$\bullet$}; \node at (0,1) {$\bullet$}; \node at (0,1.5) {$\bullet$}; %set B \node at (5,-1.5) {$\bullet$}; \node at (5,-1) {$\bullet$}; \node at (5,-0.5) {$\bullet$}; \node at (5,0) {$\bullet$}; \node at (5,0.5) {$\bullet$}; \node at (5,1) {$\bullet$}; \node at (5,1.5) {$\bullet$}; %arrows \draw[->] (0.2,-1.5) -- (4.8,-1); \draw[->] (0.2,-1) -- (4.8,-0.5); \draw[->] (0.2,-0.5) -- (4.8,0); \draw[->] (0.2,0) -- (4.8,-1.5); \draw[->] (0.2,0.5) -- (4.8,0.5); \draw[->] (0.2,1) -- (4.8,1.5); \draw[->] (0.2,1.5) -- (4.8,1); %spacer \node at (0,2.6) {\phantom{}}; \node at (0,-2.2) {\phantom{}}; \end{tikzpicture} } Each point in set $B$ is reached by at least one arrow. However, it is possible for more than two elements of $A$ to point to the same element of $B$. \section{Trigonometry} Trigonometric functions can be extended to angles beyond 0 and 90$^\circ$ using the unit circle. For an angle $\theta$ in the unit circle: \figbox{$\sin \theta = y\ \ |\ \cos \theta = x\ \ |\ \tan \theta = \frac{y}{x}$} \subsection{Conversion table of degrees and radians} \begin{center} \begin{tabular}{|c|c|c|c|c|c|c|c|c|} \hline \textbf{Angles (in Degrees)} & \rule{0pt}{15pt} $0^\circ$ & $30^\circ$ & $45^\circ$ & $60^\circ$ & $90^\circ$ & $180^\circ$ & $270^\circ$ & $360^\circ$ \\ \hline \textbf{Angles (in Radians)} & \rule{0pt}{15pt} $0$ & $\pi/6$ & $\pi/4$ & $\pi/3$ & $\pi/2$ & $\pi$ & $3\pi/2$ & $2\pi$ \\ \hline $\sin(\theta)$ & \rule{0pt}{15pt} 0 & $1/2$ & $\sqrt{2}/2$ & $\sqrt{3}/2$ & 1 & 0 & $-1$ & 0 \\ \hline $\cos(\theta)$ & \rule{0pt}{15pt} 1 & $\sqrt{3}/2$ & $\sqrt{2}/2$ & $1/2$ & 0 & $-1$ & 0 & 1 \\ \hline $\tan(\theta)$ & \rule{0pt}{15pt} 0 & $\sqrt{3}/3$ & 1 & $\sqrt{3}$ & $\infty$ & 0 & $\infty$ & 0 \\ \hline \end{tabular} \end{center} \phantom{} \underline{Remark}: \begin{center} $\cos(360^{\circ}+\theta) = \cos(\theta) \qquad | \qquad \sin(360^{\circ}+\theta) = \sin(\theta)$ \end{center} \underline{Remark}: Let $\forall k \in \mathbb{Z},\ \forall \theta \in \mathbb{R}$, then: \figbox{$\cos(\theta + k\cdot360^{\circ})=\cos(\theta)$} \newpage \subsection{Trigonometric functions in the unit circle} \begin{center} \begin{tikzpicture}[scale=3.75] \definecolor{darkgreen}{rgb}{0.0, 0.7, 0.0} % Draw the x and y axes \draw[thick, ->] (-1.5,0) -- (1.5,0) node[right] {$x$}; \draw[thick, ->] (0,-1.5) -- (0,1.5) node[above] {$y$}; % Draw the unit circle \draw (0,0) circle (1); % Draw the angle theta \draw[thick, blue] (0,0) -- (0.866,0.5) node[right] {$P(x,y)$}; \draw[dashed, blue] (0,0) -- (0.866,-0.5) node[right] {\ $P'(x,y')$}; % Draw dashed lines to indicate the projections on the axes \draw[dashed] (0.866,-0.5) -- (0.866,0.5) -- (0,0.5); % Label the angle theta \draw (0.3,0) arc (0:30:0.3); \node at (0.35,0.10) {$\theta$}; % Label the origin \node at (-0.06, -0.06) {$O$}; % Draw the projections on the axes \draw[thick, red] (0,0) -- (0.866, 0) node[midway, below] {$\cos \theta$}; \draw[thick, darkgreen] (0,0) -- (0, 0.5) node[midway, left] {$\sin \theta$}; % Additional labels and lines \node at (1.075, 0.05) {1}; \node at (-0.05, 1.1) {1}; \node at (-1.075, 0.05) {-1}; \node at (-0.05, -1.1) {-1}; % Labels for each quadrant \node at (1, 1) {I}; \node at (-1, 1) {II}; \node at (-1, -1) {III}; \node at (1, -1) {IV}; %others \draw (0.866,0) rectangle (0.816,0.05); \node[below] at (0.93,0) {$H$}; %braces \draw[decorate,decoration={brace,amplitude=5pt},thick] (1.65,0.5) -- (1.65,-0.5); \node at (1.9,0) {$\Delta y = 1$}; \end{tikzpicture} \end{center} \subsubsection{Property 1} Because we are inside a circle of radius 1: \begin{itemize} \item $-1 \leq \cos(\theta) \leq 1$; \item $-1 \leq \sin(\theta) \leq 1$. \end{itemize} \subsubsection{Property 2} Because we have a 90$^\circ$ angle, we can use Pythagoras: \figbox{$\vv{OH}^{\,2}+\vv{PH}^{\,2}=\vv{OP}^{\,2}$} Then, we can compute that: \figbox{$\sin^2(\theta) + \cos^2(\theta) = 1 \qquad \forall\, \theta \in \mathbb{R}$} \subsubsection{Example with 45$^{\circ}$} When $\theta=45^{\circ}$, then $\sin(\theta)=\cos(\theta) \Rightarrow 2\cos^2(\theta)=1 \Rightarrow \cos(\theta)=\sqrt{\frac{1}{2}} \Rightarrow \sin(\theta)=\cos(\theta)=\frac{\sqrt{2}}{2}$ \subsection{Tangent} A tangent of an angle is exactly the slope of a line: \figbox{$m = \frac{\Delta y}{\Delta x} = \tan(\theta)=\frac{\sin(\theta)}{\cos(\theta)}$} \underline{Remark}: the tangent is not defined when the angle is 90$^{\circ}$ or 270$^{\circ}$, that is when we have a vertical line. \end{document}