\documentclass{article} \usepackage{Engineering} \pdftitle{Electrical-eng} % === TEXT === \title{\textbf{Electrical Engineering \\ HSLU, Semester 2}} \author{Matteo Frongillo} \date{} \begin{document} \maketitle \tableofcontents \pagebreak \part{Lectures} \section{Current and voltage} \subsection{Current strength or current $I$} \begin{center} \includegraphics[width=.4\textwidth]{media/intensity.png} \end{center} \[I\ [A] =\dfrac{\text{el. charge}}{t}\] \subsection{Current density $J$} \begin{center} \includegraphics[width=.4\textwidth]{media/density.png} \end{center} The current density indicates how large the current per cross-sectional area (F) is: \[J\ [\dfrac{A}{mm^2}] = \dfrac{I}{F}\] \subsection{Temperature dependence of the resistance} \begin{center} \includegraphics[width=\textwidth]{media/resistance.png} \end{center} Depending on the material, the resistance can increase, remain the same or decrease with temperature. In ET+L we calculate using the linear approach. \figbox{$R(\vartheta) = R_{20}(1+\alpha(\vartheta-20^{\circ}\text{C})) = R_{20}(1+\alpha \Delta T)$} \subsection{Object properties} The resistance indicates the voltage required for a current. In addition to the material, the cross-sectional area and also the length are decisive factors. \[R=\frac{U}{I}\] \subsection{Reciprocal quantities} \subsubsection{Specific resistance} To describe material properties, the resistance per length and cross-sectional area is specified (precondition: homogeneous conductor, direct current): \[\rho\ [\frac{\Omega \cdot mm^2}{m}] = R\cdot \frac{A}{l}\] \subsubsection{Conductance} \subsubsection{Specific conductivity} \newpage \section{Fields} \subsection{Gravitational field between bodies} \efigbox{F_1 = F_2 = G\dfrac{m_1m_2}{d^2}} \subsection{Electric field between particles} \subsubsection{Coulomb's law} It calculates the amount of force between two electrically charged particles at rest: \efigbox{F=\dfrac{1}{4\pi \varepsilon_0} \cdot \dfrac{q_1q_2}{r^2}} where: \begin{itemize} \item $F$: Force [N]; \item $q$: Charge [As]; \item $\varepsilon_0$: absolute permittivity = $8.8542\cdot 10^{-12}$ [As/Vm]. \end{itemize} \subsection{Electric field and force on a charge $Q$} \subsubsection{Homogeneous electric fields} \efigbox{E=\dfrac{U}{d}} where: \begin{itemize} \item $E$: electric field strength [V/m]; \item $U$: voltage [V]; \item $d$: distance of the electrodes [m]. \end{itemize} \subsubsection{Force on a point charge} \efigbox{F=Q\cdot E} where: \begin{itemize} \item $E$: electric field strength [V/m]; \item $Q$: charge [As]; \item $F$: force [N]. \end{itemize} \newpage \section{Capacitance and Capacitor} \subsection{Capacitor} A capacitor is a device in which the capacitance is used. \subsection{Capacitance} Capacitance $C$ is the \textbf{capability} to store electric charge. It is measured by the charge divided by the applied voltage: \efigbox{C=\dfrac{Q}{U}} where: \begin{itemize} \item $Q$: charge [As]; \item $U$: voltage [V]; \item $C$: capacitance [As/V = F (Farad)]. \end{itemize} \subsubsection{Capacitance of a plate capacitor} \efigbox{C=\varepsilon\cdot \dfrac{A}{d}} where: \begin{itemize} \item $A$: plate area (one side) [m$^2$]; \item $d$: distance between plates [m]; \item $C$: capacitance [F]. \end{itemize} \pph{Permittivity} \efigbox{\varepsilon = \varepsilon_r\cdot \varepsilon_0} \begin{itemize} \item $\varepsilon_r$: relative permittivity of the dielectric, relative to the air; \item $\varepsilon_0$: absolute permittivity [As/Vm]. \end{itemize} \subsubsection{Energy in a capacitor} If a capacitor is discharged with a constant current, the voltage decreases linearly: \efigbox{\int_{0}^{t_{\text{empty}}}U(t)\cdot I\,dt = \frac{I\cdot U_0 \cdot t_{\text{empty}}}{2}} Or, simplified: \efigbox{W=\frac{1}{2}C\cdot U_0^2} where: \begin{itemize} \item $W$: energy [J or Ws]; \item $U_0$: initial voltage [V]; \item $C$: capacitance [F]. \end{itemize} \subsection{Capacitors in parallel connection} Capacitances connected in parallel add up: \efigbox{C_{\text{tot}} = \frac{\sum_{n} Q_n}{U} = \sum_{n} C_n} or \efigbox{C = \frac{\varepsilon\cdot \left(\sum_{n} A_n\right)}{d} = \sum_{n} C_n} \subsection{Capacitors in series connection} In a series connection, the reciprocal of the total capacitance is the sum of the reciprocals of the individual capacitances: \efigbox{\frac{1}{C_{\text{tot}}} = \sum_{n}\frac{1}{C_n}} where: \begin{itemize} \item $C_{\text{tot}}$: total capacitance [F]; \item $C_n$: capacitance of the $n$-th capacitor [F]. \end{itemize} \section{Transient Analysis in RC Circuits} \subsection{Charging of a Capacitor} When a capacitor is charged through a resistor, the voltage across it increases exponentially: \efigbox{U_C(t)= U_0\cdot\left(1-e^{-t/(R\cdot C)}\right)} with the time constant defined as: \efigbox{\tau=R\cdot C} where: \begin{itemize} \item $U_C(t)$: voltage across the capacitor at time $t$ [V]; \item $U_0$: applied voltage [V]; \item $R$: resistance [$\Omega$]; \item $C$: capacitance [F]; \item $\tau$: time constant [s]. \end{itemize} \subsection{Discharging of a Capacitor} When a charged capacitor discharges through a resistor, the voltage decays exponentially: \efigbox{U_C(t)= U_0\cdot e^{-t/(R\cdot C)}} and the discharging current is: \efigbox{I(t)= \frac{U_0}{R}\cdot e^{-t/(R\cdot C)}} \newpage \subsection{Transitional phase} \efigbox{f(t)=A+\Delta\cdot \left(1-e^{-t/\tau}\right) = A+(B-A)\cdot (1-e^{1/\tau})} \section{Additional Topics} \subsection{Energy Stored in a Capacitor} The energy stored in a capacitor is given by: \efigbox{W=\frac{1}{2}C\cdot U_0^2} where: \begin{itemize} \item $W$: energy [J]; \item $C$: capacitance [F]; \item $U_0$: voltage [V]. \end{itemize} \subsection{Charge--Voltage Relationship} For an ideal capacitor, the relationship between charge and voltage is: \efigbox{Q=C\cdot U} Moreover, the current is the time derivative of the charge: \efigbox{I=\frac{dQ}{dt}=C\cdot\frac{dU}{dt}} Note that the voltage across an ideal capacitor cannot change instantaneously. \newpage \section{Electromagnetic fields} \subsection{Hans Christian Ørsted Observation} \begin{center} \includegraphics[width=.4\textwidth]{media/observations.png} \end{center} \begin{enumerate} \item The magnetic field lines encircle the current-carrying conductor; \item The magnetic field lines lie in a plane perpendicular to the current-carrying wire; \item If the direction of the current is reversed, the direction of the magnetic field lines is also reversed; \item The strength of the field is directly proportional to the magnitude of the current; \item The strength of the field at any point is inversely proportional to the distance of the point from the wire. \end{enumerate} \subsection{Definitions and formulas} \subsubsection{Magnetomotive force} \efigbox{\theta = N\cdot I} \subsubsection{Ampère's circuital law} \efigbox{\theta = \oint \overrightarrow{H(s)}\cdot \mathrm{d}\vec{s}} \subsubsection{Magnetic field in a coil} \begin{center} \includegraphics[width=\textwidth]{media/magneticfield_coil.png} \end{center} \newpage \subsubsection{Magnetic flux density} \efigbox{B = \frac{\Phi}{A} = \mu \cdot H = \mu_0\mu_r\cdot H} where: \begin{itemize} \item $B$: magnetic flux density [T = Vs/m$^2$]; \item $\Phi$: magnetic flux [Wb]; \item $A$: area [m$^2$]; \item $\mu$: magnetic permeability [H/m = Vs/Am]; \item $H$: magnetic field strength [A/m]; \item $\mu_0$: magnetic constant [$4\pi\cdot 10^{-7}$ Vs/Am]; \item $\mu_r$: relative permeability. \end{itemize} \note{$\Phi$ is the sum of all B-field lines through the cross section A} \subsubsection{Magnetic field strength in coil with iron core} \begin{center} \includegraphics[width=.4\textwidth]{media/strength_iron_core.png} \end{center} \efigbox{H = \frac{N\cdot I}{l_{m}} = \frac{\Theta}{l_{m}}} where: \begin{itemize} \item $H$: magnetic field strength [A/m]; \item $N$: number of turns; \item $I$: current [A]; \item $l_{m}$: median field line length [m]; \item $\Theta$: magnetomotive force [A]. \end{itemize} \subsubsection{Magnetic relative permeability $\mu$} Permeability is a measure for the ability to conduct magnetic field lines: \begin{center} \begin{tabular}{|l|l|} \hline \textbf{Material} & $\mathbf{\mu_r}$ \\ \hline Air & 1 \\ Pure iron & up to 250'000 \\ Electrical steel & 500 \ldots 7000 \\ Steel & 40 \ldots 7000 \\ Water & 0.99991 \\ \hline \end{tabular} \end{center} \newpage \subsubsection{Coils with and without iron core} The magnetization curve of a coil without a core is linear, but there is significantly less flux density B than with an iron core. \begin{center} \includegraphics[width=.7\textwidth]{media/iron_coils.png} \end{center} \subsubsection{Law of induction and inductance} \pph{Changing magnetic flux generates a voltage} \begin{center} \includegraphics[width=.8\textwidth]{media/law_of_induction.png} \end{center} Phenomenon: a changing magnetic flux $\Phi$ induces a voltage in a conductor loop around it: \efigbox{U = -N\cdot \frac{\mathrm{d}\Phi}{\mathrm{d}t}} \newpage \subsubsection{Inductance and induction} Inductance L is the capability to generate a magnetic field. It is measured by the voltage divided by the rate of change of current over time. It is a measure of the magnetic ``capacity'' of an arrangement of conductors (e.g. coil) and can be compared to the capacity C of a capacitor. It indicates how much magnetic flux per ampere is generated. \efigbox{L = \frac{N\cdot \Phi}{I} = \frac{U}{\frac{\Delta I}{\Delta t}}} where: \begin{itemize} \item $L$: inductance [H = Vs/A]; \item $N$: number of turns; \item $\Phi$: magnetic flux [Wb]; \item $I$: current [A]; \item $U$: voltage [V]. \end{itemize} \subsubsection{Inductivity of a very long coil} The inductance of a very long coil can be calculated approximately with: \efigbox{L = \frac{\mu\cdot N^2\cdot A}{l}} where: \begin{itemize} \item $L$: inductance [H = Vs/A]; \item $\mu$: magnetic permeability [Vs/Am]; \item $N$: number of turns; \item $A$: cross-section of the coil [m$^2$]; \item $l$: length [m]. \end{itemize} \subsubsection{Energy stored in an inductor} Since a variable magnetic field induces a voltage in which a current can also flow, the magnetic field must contain energy: \efigbox{W = \frac{1}{2}L\cdot I^2} where: \begin{itemize} \item $W$: work, energy [J = Ws]; \item $L$: inductance [H = Vs/A]; \item $I$: current [A]. \end{itemize} \newpage \subsubsection{Current-voltage relationship of an inductor} The current-voltage relationship of an inductor is: \efigbox{U = L\cdot \frac{\mathrm{d}I}{\mathrm{d}t}} Special case: \efigbox{0 = L\cdot \frac{\mathrm{d}I}{\mathrm{d}t} \rightarrow u_c = 0} \subsubsection{Transient analysis} \begin{center} \includegraphics[width=.8\textwidth]{media/transient_analysis.png} \end{center} \begin{enumerate} \item The state variable $ y(t) $ is the variable that cannot change instantaneously. For the inductor, this is $ i_L(t) $. The state just before the switch action: \[ y(0^-) = i_L(0^-). \] \item The starting value is the state immediately before the switch action: \[ y(0^+) = i_L(0) = i_L(0^-). \] That is, the state variable $ i_L $ keeps the value from $ t = 0^- $. \item The final value is the value long after the switch action: \[ y(\infty) = i_L(\infty), \] which is practically reached after $ 5\tau $. \item The transient is described by the function of time: \[ y(t) = \text{final value} + \bigl(\text{starting value} - \text{final value}\bigr)\, \exp{\left(-\frac{t}{\tau}\right)}. \] Hence, \[ i_L(t) = i_L(\infty) + \Bigl(i_L(0+) - i_L(\infty)\Bigr)\, \exp{\left(-\frac{t}{\tau}\right)}. \] \end{enumerate} \newpage \pph{Time constant $\tau$ for an inductor} \efigbox{\tau = \frac{L}{R}} where: \begin{itemize} \item $\tau$: time constant [s]; \item $L$: inductance [H]; \item $R$: resistance [$\Omega$]. \end{itemize} \subsection{Examples} \subsubsection{Charging an inductor in a RL-network} \begin{center} \includegraphics[width=.5\textwidth]{media/inductor_ex1.png} \end{center} \pph{Calculations} \efigbox{i_L = \frac{U}{R}\cdot \left(1-\exp{\left(-\frac{t}{\tau}\right)}\right)\\\\\\ u_L = U\cdot \exp{\left(-\frac{t}{\tau}\right)}} \pph{Graphical representation} \begin{center} \includegraphics[width=.45\textwidth]{media/inductor_ex1_graph.png} \end{center} \newpage \subsubsection{Discharging an inductor in a RL-network} \begin{center} \includegraphics[width=.5\textwidth]{media/inductor_ex2.png} \end{center} \pph{Calculations} \efigbox{i_L = I_0\cdot \exp{\left(-\frac{t}{\tau}\right)}\\\\\\ u_L = -I_0\cdot R\cdot \exp{\left(-\frac{t}{\tau}\right)}} \pph{Graphical representation} \begin{center} \includegraphics[width=.45\textwidth]{media/inductor_ex2_graph.png} \end{center} \newpage \section{Alternating current (AC)} \subsection{Generation of alternating current / voltage} \efigbox{U = -N\cdot \dfrac{\Delta \Phi}{\Delta t}} where: \begin{itemize} \item $U$: voltage [V]; \item $N$: number of turns; \item $\Phi$: magnetic flux [Wb]. \end{itemize} \subsection{Comparison of AC and DC} \begin{figure}[htbp] \centering % DC Voltage: constant line \begin{tikzpicture} \begin{axis}[ width=0.45\textwidth, height=6cm, xlabel={Time [s]}, ylabel={Voltage [V]}, xmin=0, xmax=10, ymin=-5, ymax=5, title={DC Voltage}, axis x line=center, axis y line=left ] \addplot [blue, thick, domain=0:10] {3}; \end{axis} \end{tikzpicture} \hspace{1cm} % AC Voltage: sinusoidal function \begin{tikzpicture} \begin{axis}[ width=0.45\textwidth, height=6cm, xlabel={Time [s]}, ylabel={Voltage [V]}, xmin=0, xmax=10, ymin=-5, ymax=5, title={AC Voltage}, axis x line=center, axis y line=left ] \addplot [red, thick, samples=200, domain=0:10] {3*sin(deg(2*pi*x/5))}; \end{axis} \end{tikzpicture} \end{figure} \begin{minipage} {0.5\textwidth} \begin{center} \begin{flushleft} \subsubsection{Advantages of AC} \end{flushleft} \begin{itemize} \item Simple voltage transformation; \item Efficient trransmission; \item Easier generation; \item Compatibility with electric motors. \end{itemize} \end{center} \end{minipage} \begin{minipage} {0.5\textwidth} \begin{center} \begin{flushleft} \subsubsection{Disadvantages of AC} \end{flushleft} \begin{itemize} \item Complexity in storage; \item Higher risk of shock; \item Complex circuits; \item Higher rectification costs. \end{itemize} \end{center} \end{minipage} \subsection{Phasors} \begin{center} \begin{tikzpicture}[>=stealth,scale=1.2] \coordinate (O) at (0,0); \coordinate (Z) at (3,2); \draw[->] (-0.5,0) -- (4.2,0) node[right] {$\mathrm{Re}\,(x)$}; \draw[->] (0,-0.5) -- (0,3.2) node[right] {$\mathrm{Im}\,(y)$}; \draw[dotted] (Z) -- (3,0); \draw[dotted] (Z) -- (0,2); \fill (Z) circle(1.5pt); \node[above right] at (Z) {$z = x + yi$}; \draw[->,thick,blue] (O) -- (Z); \draw[->,thick,orange] (O) -- ++(3*0.95,2*0.95) node[midway,above,sloped] {$r$}; \node[below left] at (O) {$O$}; \begin{scope} \def\rArc{0.8} \draw[red,->] (\rArc,0) arc (0:{atan2(2,3)}:\rArc); \end{scope} \node[red, below left] at (0.75,0.35) {$\varphi$}; \end{tikzpicture} \end{center} \efigbox{z = x + yi = r\phase{\varphi}} \newpage \subsection{Oscillation as a function of the angle} Sinusoidal voltage has an instantaneous value $u(t)$ or $u$ for every time $t$. After a period of time $T$, the curve repeats itself. \efigbox{u(t) = \widehat{U} \sin(\omega \cdot t)} \subsection{Zero phase angle $\varphi$} \efigbox{u(t) = \widehat{U} \sin(\omega \cdot t + \varphi_u)} \subsubsection{Phase shift $\Delta\varphi$ between two signals} \efigbox{u(t) = \widehat{U} \sin(\omega \cdot t + \varphi_u)\\\\ i(t) = \widehat{I} \sin(\omega \cdot t + \varphi_i)} The phase shift between two signals is the difference between the their zero phase signals: \efigbox{\Delta\varphi = \varphi_u - \varphi_i} \begin{center} \begin{tikzpicture} \begin{axis}[ axis lines=middle, xlabel={$t$}, xmin=-5, xmax=5, ymin=-1.1, ymax=1.1, xtick={-4,-2,0,2,4}, ytick={-1,0,1}, grid=both ] \addplot[blue,thick,samples=200] {cos(deg(pi/2*(x+3)))}; \addplot[red,thick,samples=200] {0.8*cos(deg(pi/2*(x+2)))}; \draw[<->] (-3,0)--(-3,1) node[midway,left] {$\hat U$}; \draw[<->] (-2,0)--(-2,0.8) node[midway,left] {$\hat I$}; \draw[<->] (0,-1.1)--(4,-1.1) node[midway,below] {$T$}; \draw[<->] (0,0)--(-1,0) node[midway,above] {$\varphi_u$}; \draw[<->] (0,0)--(-2,0) node[midway,below] {$\varphi_i$}; \end{axis} \end{tikzpicture} \end{center} \subsection{Power in a sinusoidal signal and effective value} \subsubsection{Instantaneous power} The instantaneous power $p(t)$ is the actual power at a specific time $t$ and is the product of the voltage $u(t)$ and the current $i(t)$ at that moment: \efigbox{p(t) = u(t) \cdot i(t) = \dfrac{u(t)^2}{R} = i(t)^2\cdot R} The active power $P$ corresponds to the mean value of the instantaneous powerr $p(t)$ averaged over a period $T$: \efigbox{P = \dfrac{1}{T}\integral[0][T][p(t)][t]} \newpage \subsubsection{Effective value} The effective value $U_{\text{eff}}$ of a sinusoidal signal is the voltage that would generate the same power in a resistor as the sinusoidal signal: \efigbox{U_{\text{eff}} = \sqrt{\dfrac{1}{T}\integral[0][T][u(t)^2][t]} = \dfrac{\widehat{U}}{\sqrt{2}}} The same can be applied to the effective value $I_{\text{eff}}$: \efigbox{I_{\text{eff}} = \dfrac{\widehat{I}}{\sqrt{2}}} \subsection{Relationship between current and voltage on a capacitor} \begin{center} \includegraphics[width=.3\textwidth]{media/capacitor_i_u.png} \end{center} \efigbox{i = C\cdot \dfrac{\Delta u}{\Delta t}} \subsection{Capacitive reactance $X_c$} \begin{center} \includegraphics[width=.3\textwidth]{media/capacitive_reactance.png} \end{center} \efigbox{X_c = \dfrac{1}{\omega \cdot C}} where: \begin{itemize} \item $X_c$: capacitive reactance [Ohm]; \item $\omega$: angular frequency [rad/s]; \item $C$: capacitance [F = As/V]. \end{itemize} \newpage \subsection{Relationship between current and voltage on an ideal inductor} \begin{center} \includegraphics[width=.3\textwidth]{media/ideal_inductor.png} \end{center} \efigbox{u = L\cdot \dfrac{\Delta i}{\Delta t}} \subsection{Inductive reactance $X_L$} \begin{center} \includegraphics[width=.3\textwidth]{media/linear_capacitive_reactance.png} \end{center} \efigbox{X_L = \omega \cdot L} where: \begin{itemize} \item $X_L$: inductive reactance [Ohm]; \item $L$: inductance [H]; \item $\omega$: angular frequency [rad/s]; \end{itemize} \newpage \subsection{Vectors properties} \subsubsection{Multiply} The magnitude (es. the radius $r$ in polar representation) is multiplied and the angle is added: \efigbox{r_c = r_a\cdot r_b\\ \varphi_c = \varphi_a + \varphi_b} \subsubsection{Divide} The magnitude is devided and the angle is subtracted: \efigbox{r_c = \dfrac{r_a}{r_b}\\ \varphi_c = \varphi_a - \varphi_b} \subsection{Impedance $Z$} The impedance is the ratio of voltage and current phasor. It's a complex number. \efigbox{Z = \dfrac{u(t)}{i(t)}\\\\ \left|Z\right| = \dfrac{\left|u(t)\right|}{\left|i(t)\right|}\\\\ \angle Z = \angle u(t) - \angle i(t) = \Delta \varphi} Therefore, the impedance corresponds to the AC resistance with phase shift: \efigbox{\underline{Z} = \dfrac{\underline{U}}{\underline{I}} = \dfrac{U\angle \varphi_u}{I\angle \varphi_i} = Z\angle(\varphi_u - \varphi_i) = Z\angle\varphi_Z} where: \begin{minipage}{0.5\textwidth} \begin{itemize} \item $Z$: impedance [Ohm]; \item $\underline{U}$: voltage phasor [V]; \item $\underline{I}$: current phasor [A]; \end{itemize} \end{minipage} \begin{minipage}{0.5\textwidth} \begin{itemize} \item $\varphi_u$: phase angle of the voltage [rad]; \item $\varphi_i$: phase angle of the current [rad]; \item $\varphi_Z$: phase angle of the impedance [rad]. \end{itemize} \end{minipage} \subsubsection{Types of impendance} The angle of the impedance $\varphi_Z$ indicates the type of impedance: \begin{itemize} \item $\varphi_Z > 0^{\circ} \rightarrow$ voltage is ahead of current; \item $\varphi_Z = 0^{\circ} \rightarrow$ voltage and current are in phase; \item $\varphi_Z < 0^{\circ} \rightarrow$ current is ahead of voltage. \end{itemize} \vfill \begin{center} \begin{tikzpicture}[line cap=round, line join=round, font=\bfseries] \fill[yellow!30] (0,0) rectangle (6,2); \fill[purple!30] (0,0) rectangle (6,-2); \draw[-Latex, thick, green!40!black] (0,0) -- (6,0) node[right] {pure ohmic}; \draw[-Latex, thick, brown] (0,0) -- (0,2) node[above] {pure inductive}; \draw[-Latex, thick, violet] (0,0) -- (0,-2) node[below] {pure capacitive}; \node[anchor=west, black] at (0.15, 1) {inductive or ohmic-inductive}; \node[anchor=west, black] at (0.15, -1) {capacitive or ohmic-capacitive}; \end{tikzpicture} \end{center} \subsubsection{Graphical representation} \begin{center} \begin{tikzpicture}[scale=1.5] % axis \draw[-Latex] (-2,0) -- (3,0) node[right] {$\mathrm{Re}\,(x)$}; \draw[-Latex] (0,-2) -- (0,2.2) node[right] {$\mathrm{Im}\,(y)$}; % circles \draw[red] (0,0) circle(1); \draw[blue] (0,0) circle(1.7); % vectors \draw[-Latex,very thick,blue] (0,0) -- (1.7,0) node at (1.3,-0.2) {$u(t)$}; \draw[-Latex,very thick,red] (0,0) -- (0.8660254,0.5) node at (0.3,0.45) {$i(t)$}; \draw[-Latex,thick] (0.8660254,0.5) -- (2.2,1.2701705922172) node at (1.8,1.25) {$Z$}; \draw[-Latex,thick] (1.7,0) -- (2.2,0) node at (1.85,-0.2) {$R$}; \draw[-Latex,thick] (2.2,0) -- (2.2,1.2701705922172) node[midway,right] {$X_L$}; % angle \draw[Latex-Latex,thick,darkgreen] (1.225,0) arc (0:30:1.225) node at (1.4,0.35) {$\Delta\varphi$}; \end{tikzpicture} \end{center} \subsection{Admittance $Y$} The reciprocal of the impedance $Z$ is the admittance $Y$ and thus the ratio of the current and voltage phasor. The admittance therefore corresponds to the AC conductance with phase shift: \efigbox{\underline{Y} = \dfrac{\underline{I}}{\underline{U}} = \dfrac{I\angle \varphi_i}{U\angle \varphi_u} = Y\angle(\varphi_i - \varphi_u) = Y\angle\varphi_Y\\\\ \left|\underline{Y}\right| = \dfrac{1}{\left|\underline{Z}\right|}\Longrightarrow \varphi_Y = -\varphi_Z} \subsection{Current and voltage relations} \subsubsection{Resistor $R$} \pph{Current-voltage relationship for instantaneous values} \efigbox{u_R(t) = R\cdot i_R(t)} \pph{Impedance = Ohmic resistance} \efigbox{R=\frac{U_R}{I_R}\angle 0^{\circ}} \begin{center} \includegraphics[width=.6\textwidth]{media/ohmic_resistance.png} \end{center} \subsubsection{Capacitor $C$} \pph{Current-voltage relationship for instantaneous values} \efigbox{i_C(t) = C\cdot \dfrac{du_C(t)}{dt}} \pph{Impendance = Capacitive reactance} \efigbox{X_C = \dfrac{U_C}{I_C} = \dfrac{1}{\omega\cdot C}\angle -90^{\circ}} \begin{figure*}[ht!] \begin{center} \includegraphics[width=.6\textwidth]{media/capacitive_reactance_Graph.png} \caption*{Current leads the voltage by 90 degrees} \end{center} \end{figure*} \pph{Phase shift between current and voltage} \efigbox{\varphi = \arctan\left(\dfrac{-X_C}{R}\right)} \subsubsection{Inductor $L$} \pph{Current-voltage relationship for instantaneous values} \efigbox{u(t) = L\cdot \dfrac{di(t)}{dt}} \pph{Impendance = Inductive reactance} \efigbox{X_L = \dfrac{U_L}{I_L} = \omega \cdot L\angle +90^{\circ}} \begin{figure*}[ht!] \begin{center} \includegraphics[width=.6\textwidth]{media/inductive_reactance.png} \caption*{Current lags the voltage by 90 degrees} \end{center} \end{figure*} \subsection{Impendance and admittance phasor with R, C and L} \begin{center} \includegraphics[width=\textwidth]{media/impedance_admittance.png} \end{center} \subsubsection{Series connection} \pph{Resistances} \begin{center} \includegraphics[width=.5\textwidth]{media/series_resistances.png} \end{center} \efigbox{R_{\text{equi}} = \dfrac{U}{I} = \dfrac{U_{R1}+U_{R2}+U_{R3}}{I} = R_1 + R_2 + R_3} \pph{Impedances} \begin{center} \includegraphics[width=.5\textwidth]{media/series_impedances.png} \end{center} \efigbox{Z_{\text{equi}} = \dfrac{\underline{U}}{\underline{I}} = \dfrac{U_{R1}\angle0^{\circ} + U_{C1}\angle-90^{\circ} + U_{L1}\angle+90^{\circ}}{I\angle0^{\circ}} = \underline{Z_1} + \underline{Z_2} + \underline{Z_3}} \newpage Adding voltages in series connection means adding impedances: $\underline{U_R} = \underline{Z_R} \cdot \underline{I} = R\cdot\angle\varphi_i\\\\ \underline{U_L} = \underline{Z_L} \cdot \underline{I} = X_L\angle 90^{\circ} \cdot\angle\varphi_i\\\\ \underline{U_C} = \underline{Z_C} \cdot \underline{I} = X_C\angle -90^{\circ} \cdot\angle\varphi_i$ \begin{center} \includegraphics[width=.8\textwidth]{media/voltage_impedance.png} \end{center} \efigbox{Z_{\text{eq}} = Z_1 + Z_2 + Z_3} \subsubsection{Parallel connection} \pph{Resistances} \begin{center} \includegraphics[width=.5\textwidth]{media/parallel_resistances.png} \end{center} \efigbox{R_{\text{equi}} = \dfrac{U}{I} = \dfrac{1}{\dfrac{1}{R_1} + \dfrac{1}{R_2} + \dfrac{1}{R_3}} = \dfrac{1}{G_1 + G_2 + G_3}} \pph{Impedances} \begin{center} \includegraphics[width=.5\textwidth]{media/parallel_impedances.png} \end{center} \efigbox{Z_{\text{equi}} = \dfrac{\underline{U}}{\underline{I}} = \dfrac{U}{I\angle0^{\circ}} = \dfrac{1}{\dfrac{1}{\underline{Z_1}} + \dfrac{1}{\underline{Z_2}} + \dfrac{1}{\underline{Z_3}}} = \dfrac{1}{\underline{Y_1} + \underline{Y_2} + \underline{Y_3}}} \newpage Adding currents in parallel connection means adding admittances: $\underline{I_R} = \dfrac{\underline{U_R}}{\underline{Z_R}} = \dfrac{U}{R}\cdot\angle\varphi_u\\\\\\ \underline{I_L} = \dfrac{\underline{U_L}}{\underline{Z_L}} = \dfrac{U}{X_L}\angle\varphi_u -90^{\circ}\\\\\\ \underline{I_C} = \dfrac{\underline{U_C}}{\underline{Z_C}} = \dfrac{U}{X_C}\angle\varphi_u +90^{\circ}$ \begin{center} \includegraphics[width=.8\textwidth]{media/current_admittance.png} \end{center} \efigbox{\underline{Z_{\text{eq}}} = \dfrac{1}{\underline{Y_1} + \underline{Y_2} + \underline{Y_3}}} \subsection{AC newtwork analysis} AC network analysis is similar to DC network analysis but calculated with phasors. \subsubsection{Kirchhoff's current law (KCL)} \efigbox{\underline{I_1} + \underline{I_2} + ... + \underline{I_n} = \dsum{k=1}{n} \underline{I_k} = 0} \subsubsection{Kirchhoff's voltage law (KVL)} \efigbox{\underline{U_1} + \underline{U_2} + ... + \underline{U_n} = \dsum{k=1}{n} \underline{U_k} = 0} \subsubsection{Voltage and current phasor relationship for circuit elements} \efigbox{\underline{U} = \underline{Z}_{\text{Element-type}} \cdot \underline{I}} \clearpage \begin{landscape} \begin{figure}[p] \centering \includegraphics[width=1.5\textheight]{media/shifts_summary.png} \end{figure} \end{landscape} \clearpage \newpage \subsection{Power in electrical circuits} \subsubsection{Devices} \pph{Passive (load)} For electrical loads, the product of current $I$ and voltage $U$ is \textbf{positive}. Electrical power is absorbed and converted into another form of energy (e.g. heat) \pph{Active (power sources)} For electrical sources, the product of current $I$ and voltage $U$ is \textbf{negative}. Energy is converted from another form of energy into electrical power and supplied to the network. \pph{Power in eletrical circuits} The conservation of energy also applies in the electrical circuit. \subsubsection{Instantaneous power} \begin{center} \includegraphics[width=.7\textwidth]{media/instant_power.png} \end{center} \efigbox{p(t) = u(t) \cdot i(t) = \dfrac{u(t)^2}{R} = i(t)^2\cdot R} \subsubsection{Effective power} \begin{center} \includegraphics[width=.7\textwidth]{media/effective_power.png} \end{center} \efigbox{P = \dfrac{1}{T}\integral[0][T][p(t)][t] = \dfrac{U_{\text{eff}}^2}{R} = I_{\text{eff}}^2\cdot R} \subsubsection{Real power on R} \pph{When whe have $\varphi = 0^{\circ}$} \efigbox{P = U \cdot I} \pph{When we have $\varphi = \pm90^{\circ}$} With $\varphi = +90^{\circ}$, the circuit works as a perfect inductor. With $\varphi = -90^{\circ}$, the circuit works as a perfect capacitor. Since the sum of the areas underneath the power curve is zero, the average power is zero: \efigbox{P = 0} \subsubsection{Instantaneous power $p(t)$ with phase shift ($Q$)} \begin{center} \includegraphics[width=.7\textwidth]{media/instant_power_phaseshift.png} \end{center} A phase shift $\varphi$ between voltage and current leads to positive and negative instantaneous power. The amount of power that is absorbed, stored and released during a period is called \textbf{reactive power} $Q$. The unit of reactive power is called volt-ampere reactive (var). The active power $P$ is now lower by the proportion of the oscillating reactive power. \subsubsection{Real power with $0^{\circ} < \varphi < 90^{\circ}$} \efigbox{p(t) = U\cdot I \cdot \cos(\varphi) - U \cdot I \cdot \cos(2\omega t + \varphi)\\\\ p(t) = \text{average power}\ P - \text{apparent power}\ S } where: $S$: apparent power [VA] = $U\cdot I$\\ \subsubsection{Power factor, performance factor, and power triangle} \pph{Power factor} The ratio of the real power $P$ to the apparent power $S$ corresponds to the $\cos\varphi$ and is called the \textbf{power factor}. \efigbox{\cos\varphi = \dfrac{P}{S}} \pph{Performance factor} The performance factor $\lambda$ is the absolute value of the ratio of the ratio of the real power $P$ to the apparent power $S$: \efigbox{\lambda = \left|\dfrac{P}{S}\right| = \left|\cos\varphi\right|} \newpage \pph{Power triangle} The real power $P$, the reactive power $Q$, and the apparent power $S$ form a rectangular triangle with the angle $\varphi$, called \textbf{power triangle} \begin{center} \begin{tikzpicture}[thick] \coordinate (O) at (0,0); \coordinate (P) at (4,0); \coordinate (S) at (4,3); \draw[-Latex, line width=1pt, green!50!black] (O) -- (P) node[below right, text=green!50!black]{\bfseries P (Real Power)}; \draw[-Latex, line width=1pt, purple] (P) -- (S) node[midway, right, text=purple]{\bfseries Q (Reactive Power)}; \draw[-Latex, line width=1pt, orange] (O) -- (S) node[midway, left, text=orange]{\bfseries S (Apparent Power)$\quad$}; \draw[line width=1pt] (P) ++(-0.25,0) -- ++(0,0.25) -- ++(0.25,0); \pic[ draw, angle radius=10mm, "$\varphi$" ] {angle = P--O--S}; \end{tikzpicture} \end{center} \subsubsection{Apparent power $S$ [VA]} \efigbox{S = U\cdot I\\\\ S = \sqrt{P^2 + Q^2}} \subsubsection{Average power $P$ [W]} \efigbox{P = U\cdot I \cdot \cos\varphi\\\\ P = S\cdot \cos\varphi} \subsubsection{Reactive power $Q$ [var]} \efigbox{Q = U\cdot I \cdot \sin\varphi\\\\ Q = S\cdot \sin\varphi} \subsection{Work $W$ and energy $E$} The power integrated over time results in the work performed $W$. The ability to perform work is referred to as energy $E$. \subsubsection{Real energy} \efigbox{W_W = P\cdot t} \subsubsection{Reactive energy} \efigbox{W_B = Q\cdot t} \subsubsection{AC-Generator} \efigbox{U = -N\cdot \dfrac{\Delta \phi}{\Delta t}} \newpage \subsection{Classification of circuit behavior} \begin{table}[h] \centering \caption{Impedance, Phase Shift, and Power Signatures} \begin{tabular}{l | l | c | c | c} \hline \textbf{Circuit type} & $\mathbf{Z}$ & \textbf{Phase shift $\varphi$ (V→I)} & \textbf{Real power $P$} & \textbf{Reactive power $Q$} \\ \hline Purely resistive & $Z = R$ & $0^\circ$ & $>0$ & $0$ \\ Purely inductive & $Z = jX_L$ & $+90^\circ$ & $0$ & $>0$ \\ Purely capacitive & $Z = -jX_C$ & $-90^\circ$ & $0$ & $<0$ \\ Resistive--inductive & $Z = R + jX_L\ (X_L>0)$ & $0 < \varphi < +90^\circ$ & $>0$ & $>0$ \\ Resistive--capacitive& $Z = R - jX_C\ (X_C>0)$ & $-90^\circ < \varphi < 0$ & $>0$ & $<0$ \\ \hline \end{tabular} \end{table} \newpage \subsubsection{Power transport} \begin{center} \includegraphics[width=.95\textwidth]{media/power_transport.png} \end{center} \begin{center} \begin{minipage}[t]{0.3\textwidth} \centering \textbf{Producer}\\[1ex] $\dm P_{pro} = U_G\cdot I$ \end{minipage} \hfill \begin{minipage}[t]{0.3\textwidth} \centering \textbf{Transmission}\\[1ex] $\dm P_{t} = (R_1+R_2)\cdot I^2$ \end{minipage} \hfill \begin{minipage}[t]{0.3\textwidth} \centering \textbf{Customer}\\[1ex] $\dm P_{cus} = U_C\cdot I$ \end{minipage} \end{center} \vspace*{.5cm} \efigbox{\eta = \dfrac{P_{cus}}{P_{pro}} = \dfrac{P_{pro} - P_{t}}{P_{pro}} = 1 - \dfrac{P_t}{P_{pro}}} The loss in the line decreases with the square of the transmission voltage. \section{Three-phase system} \subsection{Voltage in a generator} \begin{center} \includegraphics[width=.9\textwidth]{media/generator.png} \end{center} \begin{itemize} \item Three coils with an angular distance of $120^{\circ}$; \item The rotating magnet has a constant angular velocity $\omega$; \item Three induced voltages $U$, $W$, $V$ across terminals of the coils; \item $U$, $W$, $V$ have the same frequency $f$ and amplitude $\widehat{U}$ but $120^{\circ}$ shifted. \end{itemize} \vspace*{.5cm} \begin{minipage}{0.6\textwidth} \begin{minipage}{0.5\textwidth} \begin{center} \begin{tikzpicture}[>=Latex, thick, scale=1.15] \coordinate (O) at (0,0); \fill[green!60!black] (O) circle (2pt); \node[green!60!black, left=2pt] at (O) {$N$}; \draw[->, thick] (O) -- ++( 0:2cm) node[below left] {$U_{N1}$}; \draw[->, thick, red] (O) -- ++(-120:2cm) node[midway, left] {$U_{N2}$}; \draw[->, thick, blue] (O) -- ++(120:2cm) node[midway, left] {$U_{N3}$}; \draw[blue, thick] (O) ++(0:0.6cm) arc[start angle=0, end angle=120, radius=0.6cm]; \node[blue] at ($(O)+(60:1cm)$) {$120^\circ$}; \draw[red, thick] (O) ++(0:0.6cm) arc[start angle=0, end angle=-120, radius=0.6cm]; \node[red] at ($(O)+(-60:0.9cm)$) {$-120^\circ$}; \end{tikzpicture} \end{center} \end{minipage} \hfill \begin{minipage}{0.5\textwidth} \begin{center} \begin{tikzpicture}[>=Latex, thick] \coordinate (N) at (0,0); \coordinate (A) at (2cm,0); \coordinate (B) at (1cm,1.732cm); \fill[green!60!black] (N) circle(3pt); \node[green!60!black, left=2pt] at (N) {$N$}; \draw[->] (N) -- (A) node[midway, below] {$U_{N1}$}; \draw[->, blue] (A) -- (B) node[midway, sloped, above] {$U_{N3}$}; \draw[->, red] (B) -- (N) node[midway, sloped, above] {$U_{N2}$}; \end{tikzpicture} \end{center} \end{minipage} \end{minipage} \hfill \begin{minipage}{0.4\textwidth} \begin{center} \begin{tabular}{@{}l@{}} $\underline{U}_{N1}=U_S\angle0^\circ$\\[1ex] {\color{red}$\underline{U}_{N2}=U_S\angle-120^\circ$}\\[1ex] {\color{blue}$\underline{U}_{N3}=U_S\angle+120^\circ$}\\[2.5ex] \fbox{$\underline{U}_{N1} + \textcolor{red}{\underline{U}_{N2}} + \textcolor{blue}{\underline{U}_{N3}} = 0$} \end{tabular} \end{center} \end{minipage} \subsection{Wye connection with symmetrical load} If a connection of each phase is brought together at a common point (star point), the sum of the incoming currents is always zero: \begin{center} \includegraphics[width=.9\textwidth]{media/wye.png} \end{center} \figbox{Advantage of wye connection: three transission lines instead of six.} \subsubsection{Current balance} \begin{center} \includegraphics[width=.725\textwidth]{media/balance.png} \end{center} \subsection{Line voltage} The line voltage is the difference between two phase voltages: \begin{minipage}{0.3\textwidth} \begin{center} \begin{tikzpicture}[>=Latex, thick, scale=1.15] \coordinate (O) at (0,0); \fill[green!60!black] (O) circle (3pt); \node[green!60!black, left=2pt] at (O) {$N$}; \draw[->, thick] (O) -- ++(0:2cm) node[below right] {$U_{N1}$}; \draw[->, thick, red] (O) -- ++(-120:2cm) node[below] {$U_{N2}$}; \draw[->, thick, blue] (O) -- ++(120:2cm) node[above] {$U_{N3}$}; \draw[<-, thick, dashed, cyan] (0:2cm) -- ++(150:3.46410cm) node[midway, above right] {$U_{31}$}; \draw[->, thick, dashed, brown!130] (0:2cm) -- ++(-150:3.46410cm) node[midway, below right] {$U_{12}$}; \draw[->, thick, dashed, purple!80] (-120:2cm) -- ++(90:3.46410cm) node[midway, left] {$U_{23}$}; \draw[blue, thick] (O) ++(0:0.6cm) arc[start angle=0, end angle=120, radius=0.6cm]; \draw[red, thick] (O) ++(0:0.6cm) arc[start angle=0, end angle=-120, radius=0.6cm]; \end{tikzpicture} \end{center} \end{minipage} \hfill \begin{minipage}{0.7\textwidth} \begin{minipage}{0.5\textwidth} \begin{center} \hspace*{-1.85cm}\textbf{Phase voltage}\\[1ex] \fbox{\begin{tabular}{@{}l@{}} $U_{N1} = U_s\sin(\omega \cdot t + 0^\circ)$\\[1ex] $U_{N2} = U_s\sin(\omega \cdot t - 120^\circ)$\\[1ex] $U_{N3} = U_s\sin(\omega \cdot t + 120^\circ)$ \end{tabular}} \end{center} \end{minipage} \hfill \begin{minipage}{0.5\textwidth} \begin{center} \hspace*{-3.75cm}\textbf{Line voltage}\\[1ex] \fbox{\begin{tabular}{@{}l@{}} ${\color{brown!130}U_{12}} = U_{N2} - U_{N1} = \sqrt{3}\cdot U_S\sin(\omega \cdot t - 150^\circ)$\\[1ex] ${\color{purple!80}U_{23}} = U_{N3} - U_{N2} = \sqrt{3}\cdot U_S\sin(\omega \cdot t + 90^\circ)$\\[1ex] ${\color{cyan}U_{31}} = U_{N1} - U_{N3} = \sqrt{3}\cdot U_S\sin(\omega \cdot t - 30^\circ)$ \end{tabular}} \end{center} \end{minipage} \end{minipage} \figbox{Advantage of line voltage: the three phase system provides two voltages} \newpage \pph{Graphical representation} \begin{tikzpicture} \begin{axis}[ domain=0:2*pi, samples=200, trig format=rad, axis x line=bottom, axis y line=left, width=\textwidth, height=.3\textheight, xmin=0, xmax=7, ymin=-2, ymax=2, grid=both, grid style={gray!30}, legend cell align=left, legend pos=south west, clip=false, ] \addplot[very thick] {sin(x + pi/180)} node [below right] {$U_{1N}$}; \addplot[blue, very thick] {sin(x + 2*pi/3)} node [right] {$U_{2N}$}; \addplot[red, very thick] {sin(x - 2*pi/3)} node [right] {$U_{3N}$}; \addplot[cyan, very thick, dashed] {sin(x + pi/180) - sin(x + 2*pi/3)} node at (2*pi, -.95) [below right] {$U_{31}$}; \addplot[purple!80, very thick, dashed] {sin(x + 2*pi/3) - sin(x - 2*pi/3)} node [right] {$U_{23}$}; \addplot[brown!130, very thick, dashed] {sin(x - 2*pi/3) - sin(x + pi/180)} node at (2*pi, -0.8) [above right] {$U_{12}$}; \addplot[green!60!black, very thick] {0} node [above right] {$N$}; \end{axis} \end{tikzpicture} \vspace*{.5cm} \begin{center} \includegraphics[width=.8\textwidth]{media/phasor_diagram.png} \end{center} \subsection{Wye (Y) and Delta ($\Delta$) circuits} \begin{center} \includegraphics[width=\textwidth]{media/wye_and_delta.png} \end{center} \newpage \subsubsection{Y-Circuit} \begin{center} \includegraphics[width=.75\textwidth]{media/y_circuit.png} \end{center} \pph{Balanced wye connection} \figbox{$\underline{Z_1} = \underline{Z_2} = \underline{Z_3}$\\\\ $I=I_S$\\\\ $\left|\underline{I_1}\right| = \left|\underline{I_2}\right| = \left|\underline{I_3}\right|$} where: \begin{itemize} \item $\underline{Z_1}$, $\underline{Z_2}$, $\underline{Z_3}$: impedances of the three phases; \item $I$: current in the line ($I_1, I_2, I_3$); \item $I_S$: current in the star point ($I_{Z1}, I_{Z2}, I_{Z3}$). \end{itemize} \figbox{$U = \sqrt{3}U_S$} where: \begin{itemize} \item $U$: line voltage; \item $U_S$: phase voltage. \end{itemize} \pph{Apparent power in one impedance} \efigbox{S_1 = U_{1N} \cdot I_1\\\\ S_2 = U_{2N} \cdot I_2\\\\ S_3 = u_{3N} \cdot I_3} \pph{Total apparent power} \efigbox{S_{\text{total}} = 3\cdot U_S \cdot I = \sqrt{3}\cdot U \cdot I} \subsubsection{Balanced delta connection} \begin{center} \includegraphics[width=.75\textwidth]{media/delta_connection.png} \end{center} \pph{Balanced delta connection} \figbox{$\underline{Z_{12}} = \underline{Z_{23}} = \underline{Z_{31}}$\\\\ $I=\sqrt{3}\cdot I_S$\\\\ $\left|\underline{I_{12}}\right| = \left|\underline{I_{23}}\right| = \left|\underline{I_{31}}\right| = \dfrac{I_1}{\sqrt{3}} = \dfrac{I_2}{\sqrt{3}} = \dfrac{I_3}{\sqrt{3}}$} where: \begin{itemize} \item $\underline{Z_12}$, $\underline{Z_23}$, $\underline{Z_31}$: impedances of the three phases; \item $I$: current in the line ($I_1, I_2, I_3$); \item $I_S$: current in the star point ($I_{12}, I_{23}, I_{31}$). \end{itemize} \efigbox{U = \sqrt{3}\cdot U_S} where: \begin{itemize} \item $U$: line voltage ($U_{12}, U_{23}, U_{31}$); \item $U_S$: phase voltage ($U_{1N}, U_{2N}, U_{3N}$). \end{itemize} \pph{Apparent power in one impedance} \efigbox{S_{12} = U_{12} \cdot I_{12} = \sqrt{3}\cdot U_{1N} \cdot \dfrac{I_1}{\sqrt{3}}\\\\ S_{23} = U_{23} \cdot I_{23} = \sqrt{3}\cdot U_{2N} \cdot \dfrac{I_2}{\sqrt{3}}\\\\ S_{31} = U_{31} \cdot I_{31} = \sqrt{3}\cdot U_{3N} \cdot \dfrac{I_3}{\sqrt{3}}} \pph{Total apparent power} \vspace*{-.5cm} \efigbox{S_{\text{total}} = 3\cdot U_S \cdot I = \sqrt{3}\cdot U \cdot I} \newpage \subsection{Balanced operation -- Power calculation} \subsubsection{Apparent power (AV)} \efigbox{S = 3\cdot U_S \cdot I = \sqrt{3}\cdot U \cdot I = \dfrac{P}{\cos\varphi} = \dfrac{Q}{\sin\varphi} = \sqrt{P^2 + Q^2}} \subsubsection{Average power (W)} \efigbox{P = S\cdot \cos\varphi = \sqrt{S^2 - Q^2} = \sqrt{3}\cdot U \cdot I \cdot \cos\varphi} \subsubsection{Reactive power (var)} \efigbox{Q = S\cdot \sin\varphi = \sqrt{S^2 - P^2} = \sqrt{3}\cdot U \cdot I \cdot \sin\varphi} \subsubsection{Average power of resistive loads (W)} \efigbox{P_Y = 3\cdot \dfrac{U_S^2}{R} = \dfrac{\left(\sqrt{3}\cdot U_S\right)^2}{R} = \dfrac{U^2}{R}\\\\ P_{\Delta} = 3\cdot \dfrac{\left(\sqrt{3}\cdot U_S\right)^2}{R} = 3\cdot \dfrac{U^2}{R}} \efigbox{P_Y = P_{\Delta}} \subsection{Three-phase motors} \begin{center} \includegraphics[width=\textwidth]{media/motor.png} \end{center} \figbox{Advantage of three-phase motors: motors can be easily built with three-phase systems.} \newpage \subsection{Symmetrical operation \textrightarrow\ constant power} \subsubsection{Instantaneous power} \efigbox{p(t) = \dfrac{\left(\widehat{U}\cdot \sin\left(\omega t - \varphi\right)\right)^2}{R} = \dfrac{\widehat{U}^2}{2}\cdot \left[1-\cos\left(2\left(\omega t - \varphi\right)\right)\right]} \subsubsection{Sum of the three instantaneous powers} \efigbox{p_{L1}(t) + p_{L2}(t) + p_{L3}(t) = \dfrac{\widehat{U}²}{2R} \cdot \left[\underbrace{3-\cos(2(\omega t)) - \cos(2(\omega t - 120^\circ)) - \cos(2(\omega t + 120^\circ))}_{= 0}\right] = 3\cdot \dfrac{\widehat{U}^2}{2R} = 3\cdot \dfrac{U^2}{R}} \figbox{Advantage of symmetrical operation: the sum of the instantaneous powers is constant.} \newpage \subsubsection{Summary of the advantages of three-phase system} \begin{itemize} \item Three transmission lines instead of six; \item The three phase system provides two voltages; \item Motors can be easily built with three-phase systems; \item with symmetrical operation, the sum of the instantaneous powers is constant. \end{itemize} \end{document}