\documentclass{article} \usepackage{Engineering} \usepackage{multicol} \usepackage{tcolorbox} \usepackage{titlesec} \usepackage{titling} \usepackage{etoolbox} \usepackage{tabularx} % === METADATA === \pdftitle{EFPLab1 Cheatsheet} % === HEADER/FOOTER === \usepackage{fancyhdr} \pagestyle{fancy} \fancyhf{} \lhead{Matteo Frongillo} \chead{\nouppercase{\leftmark}} \rhead{\thepage} \renewcommand{\sectionmark}[1]{\markboth{#1}{}} % === CUSTOM BOX COMMANDS === \definecolor{BoxBG}{HTML}{F0F8FF} \definecolor{BoxBorder}{HTML}{3B83BD} \newtcolorbox{theorybox}[1]{ colback=BoxBG, colframe=BoxBorder, fonttitle=\bfseries, left=1mm,right=1mm,top=1mm,bottom=1mm, boxrule=0.8pt, arc=1.5mm, title={\begingroup\intheoryboxtitletrue #1\endgroup\intheoryboxtitlefalse} } \newtcolorbox{examplebox}[1]{ colback=gray!10!white, colframe=gray!80!black, coltitle=white, fonttitle=\bfseries, left=1mm,right=1mm,top=1mm,bottom=1mm, boxrule=0.8pt, arc=1.5mm, title={#1} } \newtcolorbox{formula}[1]{ colback=red!10!white, colframe=red!90!black!75, fonttitle=\bfseries, left=1mm,right=1mm,top=1mm,bottom=1mm, boxrule=0.8pt, arc=1.5mm, title={#1} } % === SECTION TITLE FORMATTING === \newif\ifintheoryboxtitle \intheoryboxtitlefalse \titleformat{\section} {\ifintheoryboxtitle\color{white}\else\color{BoxBorder}\fi\Large\bfseries} {\thesection}{0.5em}{} \titleformat{\subsection} {\ifintheoryboxtitle\color{white}\else\color{BoxBorder}\fi\bfseries} {\thesubsection}{0.5em}{} \titleformat{\subsubsection} {\ifintheoryboxtitle\color{white}\else\color{BoxBorder}\fi\small\bfseries} {\thesubsubsection}{0.5em}{} % === DOCUMENT === \begin{document} \begin{multicols}{2} \setlength{\columnsep}{1pt} % === CONTENT === \section{Preambule} \begin{theorybox}{Theory box} Lorem ipsum dolor sit amet. \end{theorybox} \begin{formula}{Formula box} Lorem ipsum dolor sit amet. \end{formula} \begin{examplebox}{Lab/examples box} Lorem ipsum dolor sit amet. \end{examplebox} \section{Fluids as energy carriers} \subsection{Fluid state variables and properties} \begin{theorybox}{Formulas} \subsubsection{State variables} \textbf{Density} \begin{equation} \rho \triangleq \dfrac{m}{V} \left[\dfrac{kg}{m^3}\right] \end{equation} \textbf{Specific volume} \begin{equation} v \triangleq \dfrac{V}{m} = \dfrac{1}{\rho} \left[\dfrac{m^3}{kg}\right] \end{equation} \subsubsection{Viscosity} \textbf{Kinematic viscosity} \begin{equation} \nu \triangleq \dfrac{\eta}{\rho} \left[\dfrac{m^2}{s}\right] \end{equation} \textbf{Dynamic viscosity} \begin{equation} \eta \triangleq \nu\cdot\rho \left[Pa\cdot s = \dfrac{Ns}{m^2} = \dfrac{kg}{m \cdot s}\right] \end{equation} \subsubsection{Real and ideal fluid} \begin{tabularx}{\linewidth}{@{}X@{\hspace{.1766cm}}X@{}} \textbf{Real fluid} & \textbf{Ideal fluid} \\ variable density $\left(\Delta \rho \neq 0\right)$ & incompressible $\left(\Delta \rho = 0\right)$ \\ friction $\left(\eta > 0, \nu > 0\right)$ & frictionless $\left(\eta=0, \nu=0\right)$ \\ \end{tabularx} \\ \subsubsection{Compressibility} \textbf{Mach number} \begin{equation} M \triangleq \dfrac{u}{c} \end{equation} where: \begin{itemize} \item $M$ is the Mach number [-]\\ $M \lesssim 0.3$: incompressible flow \item $u$ is the flow velocity [m/s] \item $c$ is the speed of sound in the fluid [m/s] \end{itemize} and: \begin{itemize} \item $c_{\text{w}}^{20^\circ} = 1484$ m/s \item $c_{\text{a}}^{20^\circ} = 343$ m/s \end{itemize} \end{theorybox} \vfill \phantom{} \columnbreak \subsection{Laminar and turbulent flow} \begin{formula}{Reynolds number} \begin{equation} Re = \dfrac{v\cdot L}{\nu} = \dfrac{\rho\cdot v\cdot L}{\eta} \left[-\right] \end{equation} where: \begin{itemize} \item $v$ is the mean flow velocity [m/s] \item $L$ is the characteristic length [m] \end{itemize} \begin{examplebox}{Re values} \begin{itemize} \item $Re < 2000$: laminar flow \item $Re \simeq 2300$: critical point \item $2000 < Re < 4000$: transitional regime \item $Re \geq 4000$: turbulent flow \end{itemize} \end{examplebox} \end{formula} \subsection{Pressure and velocity} \begin{theorybox}{Pressure} \subsubsection{Total pressure} Added to the static pressure $p_{\rm stat}$, there is also the dynamic pressure $p_{\rm dyn}$ and the total pressure $p_{\rm tot}$: \begin{equation} p_{\rm tot} = p_{\rm stat} + p_{\rm dyn} = \rho\left(gh + \frac{v^2}{2}\right) \end{equation} \subsubsection{Absolute pressure} Absolute pressure $p_{\rm abs}$ refers to the pressure in a vacuum $p_{\rm vaacum}=0$ Pa, while relative pressure $p_{\rm rel}$ can refer to any chosen reference pressure $p_{\rm ref}$. \begin{equation} p_{\rm rel} = p_{\rm abs} - p_{\rm ref} \Longleftrightarrow p_{\rm abs} = p_{\rm rel} + p_{\rm ref} \geq 0 \end{equation} \subsubsection{Velocity} Velocity is a vector quantity: \begin{equation} \vec{v} = \left(v_x v_y v_z\right) \end{equation} The magnitude is given by: \begin{equation} v = \sqrt{v_x^2 + v_y^2 + v_z^2} \end{equation} \end{theorybox} \subsection{Curvature pressure formula} \begin{examplebox}{Deflection motion of a fluid element around a blunt body} \includegraphics[width=\textwidth]{media/pressure_curvatur.png} \vspace*{-0.6cm} \begin{equation} \dfrac{dp}{dn} = -\rho\cdot\dfrac{v^2}{R} \end{equation} \end{examplebox} \vfill \phantom{} \end{multicols} \newpage \begin{multicols}{2} \setlength{\columnsep}{1pt} \section{Mass conservation} \subsection{Continuity equation / Mass conservation} \begin{theorybox}{Continuity equation} \includegraphics[width=\textwidth]{media/ContinuityBild1.png} \subsubsection{Steady mass-flow} \begin{equation} \dot m_{\rm in} = \dot m_{\rm out} \end{equation} \subsubsection{Incompressible fluid} \begin{equation} \dot m = \rho\,\dot V \quad\Longrightarrow\quad \dot V_{\rm in} = \dot V_{\rm out} \end{equation} \subsubsection{Streamline theory} \begin{equation} \dot V = \bar v\,A \quad\Longrightarrow\quad \bar v_{\rm in}\,A_{\rm in} = \bar v_{\rm out}\,A_{\rm out} \end{equation} \end{theorybox} \section{Energy conservation} \subsection{Fluid mechanical energy conservation} \begin{theorybox}{Derivation of the Bernoulli equation} \vspace*{-0.3cm} \begin{equation} \dot{m}_1 \left(\dfrac{p_1}{\rho} + \dfrac{v_1^2}{2} + gz_1\right) = \dot{m}_2 \left(\dfrac{p_2}{\rho} + \dfrac{v_2^2}{2} + gz_2\right) \end{equation} This derivation is based on the assumption that the system has: \begin{minipage}[t]{0.48\linewidth} \begin{itemize} \item steady flow \item ideal fluid \item adiabatic process \end{itemize} \end{minipage} \hfill \begin{minipage}[t]{0.48\linewidth} \begin{itemize} \item no work in or out of the system \item 1D streamline flow \end{itemize} \end{minipage} \subsubsection{Energy flow} \vspace*{-0.5cm} \begin{align} \frac{dE}{dt} =\ &\underbrace{\sum P + \sum \dot{Q}}_{ \substack{ \text{Energy flow} \\ \text{across system boundary} } } \notag \\ &+ \underbrace{\sum_{in} \left[\dot{m}^{\swarrow} \cdot \left(h^{\swarrow} + \frac{v^{2\swarrow}}{2} + g z^{\swarrow}\right)\right]}_{ \substack{ \text{Energy transfer} \\ \text{mass in} } } \notag \\ &- \underbrace{\sum_{out} \left[\dot{m}^{\nearrow} \cdot \left(h^{\nearrow} + \frac{v^{2\nearrow}}{2} + g z^{\nearrow}\right)\right]}_{ \substack{ \text{Energy transfer} \\ \text{mass out} } } \end{align} \vspace*{-0.5cm} \subsubsection{Outflow formula according to Torricelli} \begin{equation} gz_1 = \frac{v_2^2}{2} \Longrightarrow v_2 = \sqrt{2g\Delta z} \end{equation} \end{theorybox} \columnbreak \subsection{Bernoulli equation} \begin{formula}{Specific energy equation} \begin{center} \includegraphics[width=0.95\textwidth]{media/Bernoulli.png} \end{center} \begin{equation} \dfrac{p_1}{\rho} + \dfrac{v_1^2}{2} + gz_1 = \dfrac{p_2}{\rho} + \dfrac{v_2^2}{2} + gz_2 = {\rm const.} \left[\dfrac{J}{kg}\right] \end{equation} \subsubsection{Alternative forms} \textbf{Pressure equation} \begin{equation} p_1 + \dfrac{\rho v_1^2}{2} + \rho g z_1 = p_2 + \dfrac{\rho v_2^2}{2} + \rho g z_2 = {\rm const.} \left[Pa\right] \end{equation} \textbf{Height equation} \begin{equation} \dfrac{p_1}{\rho g} + \dfrac{v_1^2}{2g} + z_1 = \dfrac{p_2}{\rho g} + \dfrac{v_2^2}{2g} + z_2 = {\rm const.} \left[m\right] \end{equation} \end{formula} \begin{theorybox}{True energy equation} The Bernoulli equation states that the sum of these energies is constant along a streamline. \subsubsection{Pressure energy} \begin{equation} E_p = m\cdot \frac{p}{\rho} \left[J\right] \end{equation} \subsubsection{Kinetic energy} \begin{equation} E_{\rm kin} = m\cdot \frac{v^2}{2} \left[J\right] \end{equation} \subsubsection{Potential energy} \begin{equation} E_{\rm pot} = m\cdot g\cdot z \left[J\right] \end{equation} \subsubsection{Energy conservation} \vspace*{-0.5cm} \begin{align} E_{p,1} + E_{\rm kin,1} + E_{\rm pot,1} &= E_{p,2} + E_{\rm kin,2} + E_{\rm pot,2} \notag \\[1.5ex] m\left(\dfrac{p_1}{\rho}+\dfrac{v_1^2}{2}+gz_1\right) &= m\left(\dfrac{p_2}{\rho}+\dfrac{v_2^2}{2}+gz_2\right) \end{align} \end{theorybox} \subsection{Hydrostatics} \begin{formula}{Fundamental law of hydrostatics} \begin{equation} p = p_0 + \rho g h = {\rm const.} \left[\rm Pa\right] \end{equation} derived from: \begin{equation} p = p_0 + \dfrac{F_g}{A} = p_0 + \dfrac{mg}{A} = p_0 + \dfrac{\rho hAg}{A} \end{equation} \end{formula} \vfill \phantom{} \end{multicols} \newpage \begin{multicols}{2} \setlength{\columnsep}{1pt} \begin{examplebox}{Venturi effect} \subsection{Venturi effect experiment} \subsubsection{Height -- pressure difference at $\dot{V} = 6$ l/s} \includegraphics[width=\textwidth]{media/venturi.png} \subsubsection{Relative static pressure $p_{\rm rel}$} \includegraphics[width=\textwidth]{media/venturi_relative.png} \vspace*{-0.3cm} \begin{equation} p_{\rm rel} = p_{\rm hydro} = \rho g \left(h-h_{\rm ref}\right) \end{equation} \subsubsection{Dynamic pressure $p_{\rm dyn}$} \includegraphics[width=\textwidth]{media/venturi_dyn.png} \vspace*{-0.3cm} \begin{equation} p_{\rm dyn} = \rho\dfrac{v^2}{2} \end{equation} \subsubsection{Dynamic pressure $v$} \includegraphics[width=\textwidth]{media/venturi_velocity.png} \vspace*{-0.3cm} \begin{equation} v=\dfrac{\dot{V}}{A} \end{equation} \subsubsection{Pressure difference $\Delta p$} \includegraphics[width=\textwidth]{media/venturi_pressure.png} \vspace*{-0.3cm} \begin{equation} \Delta p = p_{\rm NoFric} - p_{\rm real} \Longrightarrow p_V \sim v^2 \end{equation} \end{examplebox} \vfill \columnbreak \begin{examplebox}{Venturi effect} \textbf{Measurament points}\\[1ex] \includegraphics[width=\textwidth]{media/venturi_points.png} \textbf{Measurament shear flow}\\[1ex] \includegraphics[width=\textwidth]{media/venturi_flow.png} \end{examplebox} \begin{formula}{Just to not forget} \begin{equation} A_{\rm pipe} = D^2 \pi = \frac{r^2\pi}{4} \Longleftrightarrow D = 2\sqrt{\frac{A}{\pi}} \end{equation} \end{formula} \subsection{Contraction coefficient} \begin{theorybox}{Outflow contraction coefficient $\alpha$} \begin{center} \includegraphics[width=.75\textwidth]{media/contraction.png} \end{center} \begin{equation} \alpha = \dfrac{A_{\rm actual}}{A_{\rm opening}} = \dfrac{\pi}{2 + \pi} \approx 0.611 [-] \end{equation} \end{theorybox} \subsection{Energy line diagram} \begin{theorybox}{Ideal fluid energy line diagram} \includegraphics[width=\textwidth]{media/EGL_Duese_EN.PNG} \end{theorybox} \begin{theorybox}{Extended energy line diagram} \includegraphics[width=\textwidth]{media/04_energyLineDiagram_vGB.png} \end{theorybox} \vfill \end{multicols} \newpage \begin{multicols}{2} \setlength{\columnsep}{1pt} \subsection{Extended Bernoulli equation} \begin{formula}{Extension of the Bernoulli equation} \vspace*{-0.4cm} \begin{align} &\dfrac{p_1}{\rho} + \dfrac{v_1^2}{2} + gz_1 + e_A = \dfrac{p_2}{\rho} + \dfrac{v_2^2}{2} + gz_2 + e_V \left[\frac{J}{kg}\right] \notag \\ &E_{p,1} + K_1 + U_1 + E_A = E_{p,2} + K_2 + U_2 + E_V \left[J\right] \end{align} \end{formula} \subsubsection{Additional terms} \begin{theorybox}{Work term $e_A$} \begin{equation} e_A = \frac{p_A}{\rho} = gz_A = \frac{E_A}{m} = \frac{P_A}{\dot{m}} \left[\frac{J}{kg}\right] \end{equation} where:\\ \begin{minipage}[t]{0.48\linewidth} $e_A$: work term [J/kg] \\ $p_A$: pressure diff [Pa] \\ $z_A$: height difference [m] \end{minipage} \hfill \begin{minipage}[t]{0.48\linewidth} $E_A$: energy difference [J] \\ $P_A$: power difference [W] \end{minipage}\\[1.5ex] If energy is added to the fluid along a streamline from point 1 to point 2 (eg. a pump), the total energy at point 2 becomes higher than at point 1.\\ \textbf{Sign convention}\\ $\mathbf{e_A > 0}$: work is done on the fluid\\ \textrightarrow\ energy is added to the fluid (eg. pump);\\ $\mathbf{e_A < 0}$: work is done by the fluid\\ \textrightarrow\ energy is extracted from the fluid (eg. turbine). \begin{formula}{Pump and turbine work $Y$} In the pressure equation, the pressure $p_A$ increase (or decrease with a turbine) can be read directly at the working term, hence: \begin{equation} e_w = Y = \frac{W_A}{\dot{m}} = \frac{E_A}{m} = H\cdot g = \frac{p_A}{\rho} \left[\frac{J}{kg}\right] \end{equation} The hydraulic power $P_{\rm hyd}$ is then given by: \begin{equation} P_{\rm hyd} = \dot{m}\cdot Y = \dot{V}\cdot \rho\cdot Y = \rho\cdot \dot{V} \cdot g \cdot H \left[W\right] \end{equation} \end{formula} \end{theorybox} \begin{theorybox}{Specific loss term $e_V$} \begin{equation} e_V = \frac{p_V}{\rho} = gz_V = \frac{E_V}{m} = \frac{P_V}{\dot{m}} \left[\frac{J}{kg}\right] \end{equation} where:\\ \begin{minipage}[t]{0.48\linewidth} $e_V$: loss term [J/kg] \\ $p_V$: pressure diff [Pa] \\ $z_V$: height loss [m] \end{minipage} \hfill \begin{minipage}[t]{0.48\linewidth} $E_V$: energy loss [J] \\ $P_V$: power loss [W] \end{minipage}\\[1.5ex] The effects of a viscous fluid along a stramline from point 1 to point 2 are taken into account by $e_V$. \begin{formula}{Pressure loss $\Delta p_V$} \vspace*{-0.48cm} \begin{equation} \Delta p_V = e_V \cdot \rho = \frac{E_V\cdot \rho}{m} = g\cdot z_V \cdot \rho = \zeta\cdot \rho \cdot \frac{v^2}{2} \left[Pa\right] \end{equation} \end{formula} \end{theorybox} \vfill \columnbreak \subsection{Loss behavior in turbolent flows} \begin{formula}{Zeta value} \begin{equation} \zeta = \frac{2\cdot \Delta p_V}{\rho\cdot v^2} \end{equation} \end{formula} \begin{theorybox}{Total pressure loss} If multiple losses occur in a system due to sequentially connected hydraulic components, the ttal loss $\Delta p_{V,\rm tot}$ is given by the sum of the individual losses: \vspace*{-0.3cm} \begin{align} \Delta p_{V,\rm tot} &= \sum_{i} \Delta p_{V,i} = \sum_{i} \zeta_i\cdot \rho\cdot \frac{v^2_i}{2} \left[Pa\right]\\ \Delta p_{V,\rm tot} &= \rho \cdot \frac{v^2}{2} \cdot \sum_{i} \zeta_i = \rho\cdot \frac{v^2}{2} \cdot \zeta_{\rm tot} \left[Pa\right] \end{align} \end{theorybox} \begin{theorybox}{Pressure head (prevalenza)} The pressure head $H$ is the (energy) height corresponding to its specific potential energy $e_A$: \begin{equation} H = \frac{e_A}{g} = \frac{\Delta p_A}{\rho\cdot g} \left[m\right] \end{equation} \end{theorybox} \begin{examplebox}{U-Tube manometer} \includegraphics[width=\textwidth]{media/venturi_ex.png} \begin{equation} h = \frac{\rho \left(v_ 2^2 - v_1^2\right)}{2g\left(\rho_{\rm Hg} - \rho_w\right)} \end{equation} \end{examplebox} \subsection{Efficiency} \begin{theorybox}{Efficiency factor $\eta$} \begin{align} \eta &= \frac{P_{\rm out}}{P_{\rm in}} = \frac{\rm Benefit}{\rm Effort}\\[2ex] \eta_{\rm hyd} &= \frac{P_{\rm real}}{P_{\rm ideal}} = \frac{\dot{m} \cdot e_{\rm real}}{\dot{m} \cdot e_{\rm ideal}} = \frac{e_A - e_V}{e_A} \notag\\ \eta_{\rm hyd} &= \left(= \frac{\Delta e_k + \Delta e_{\rm pot} + \Delta e_p}{e_A}\right) \end{align} \subsubsection{Volumetric efficiency $\eta_{\rm vol}$} \begin{equation} \eta_{\rm vol} = \frac{\dot{m}_{\rm real}}{\dot{m}_{\rm ideal}} = \frac{\dot{V}_{\rm real}}{\dot{V}_{\rm ideal}} \end{equation} \end{theorybox} \vfill \phantom{} \end{multicols} \newpage \begin{multicols}{2} \setlength{\columnsep}{1pt} \begin{theorybox}{Efficiency factor $\eta$} \subsubsection{Efficiency of a pump-driven system} \vspace{-0.3cm} \begin{gather} \eta_{\rm pump} = \frac{P_{\rm hyd}}{P_{\rm mech}} = \frac{\dot{m} \cdot Y}{M\cdot \omega}\\ \eta_{\rm tot} = \underbrace{{\eta_{\rm el} \cdot \eta_{\rm mech} \cdot \eta_{\rm vol}}}_{\rm Pump} \cdot \eta_{\rm hyd}^{\rm system} \end{gather} In the case of an eletrically driven pump, the effective power transferred to the fluid is thus: \vspace*{-0.15cm} \begin{equation} P_{\rm eff} = P_{\rm el} \cdot \eta_{\rm tot} \Longleftrightarrow P_{\rm el} = \frac{P_{\rm pump}}{\eta_{\rm pump}} \vspace*{-0.15cm} \end{equation} \subsubsection{Efficiency of a turbine-driven system} \vspace{-0.3cm} \begin{gather} \eta_{\rm turbine} = \frac{P_{\rm mech}}{P_{\rm hyd}} = \eta_{\rm mech} \cdot \eta_{\rm hyd}\\ \eta_{\rm tot} = \eta_{\rm turbine} \cdot \eta_{\rm el} = \eta_{\rm mech} \cdot \eta_{\rm hyd} \cdot \eta_{\rm el} \end{gather} \end{theorybox} \section{Pipe flows} \subsection{Flow characteristics} \begin{formula}{Reynolds number in pipes} \begin{equation} Re = \frac{v_m \cdot d}{\nu} \end{equation} \end{formula} \begin{theorybox}{Pipe flows} \subsubsection{Laminar pipe flow} The pressure loss of a laminar pipe flow is described by the Hagen-Poiseuille: \vspace*{-0.1cm} \begin{align} &v(r) = \frac{p_1 - p_2}{4\eta \cdot l}\left(R^2 - r^2\right)\\ &v_m = \frac{v_{\rm max}}{2} = \frac{p_1 - p_2}{8\eta \cdot l}\cdot R^2 \notag \\ &v_m = \frac{p_1 - p_2}{32\eta \cdot l}\cdot d^2 \notag \\ &\Delta p = 32\eta \cdot v_m\cdot \frac{l}{d^2} \end{align} \vspace*{-0.1cm} \subsubsection{Turbolent flow / Pressure lost in pipelines} Flow losses in pipeline systems consist of pressure losses in straight or curved pipes as well as in fittings. \begin{equation} \Delta p = \lambda \cdot \frac{l}{d} \cdot \rho \cdot \frac{v_m^2}{2} \end{equation} \subsubsection{Resistance coefficient $\lambda$} \vspace*{-0.5cm} \begin{align} &\lambda \cdot \frac{l}{d} \cdot \rho \cdot \frac{v_m^2}{2} = 32\eta \cdot v_m \cdot \frac{l}{d^2} \notag \\[1.5ex] &\lambda = \frac{64\eta}{v_m \cdot d \cdot \rho} = \frac{64}{Re} \end{align} \subsubsection{Loss coefficient $\zeta$ of a pipe} \begin{equation} \zeta = \frac{l}{d}\cdot \lambda \end{equation} \end{theorybox} \vfill \columnbreak \subsection{Straight pipes} \subsubsection{Moody diagram} The resistance coefficient $\lambda$ depends on the flow characteristics (quantified by the Reynolds number $Re$) and the relative wall roughness. \includegraphics[width=\columnwidth]{media/Moody-Diagramm_en.png} \begin{theorybox}{Pipe fittings} In pipeline systems, a portion of the pressure losses is caused by fittings: \begin{equation} \Delta p = e_v \cdot \rho = \zeta \cdot \rho \cdot \frac{v_m^2}{2} \end{equation} \subsubsection{Elbows} \begin{center} \includegraphics[width=.8\textwidth]{media/Sekundärströmung-Rohrkrümmer.jpg} \end{center} \begin{align} \Delta p = \zeta \cdot \rho \cdot\frac{v^2}{2}\\ \zeta = f_{Re} \cdot \zeta_u \end{align} where (given from individual diagrams): \begin{itemize} \item $\zeta_u$ is the geometric resistance coefficient; \item $f_{Re}$ is the Reynolds correction factor. \end{itemize} \subsubsection{Diffuser} A diffuser is a section in a pipeline with a continuous increase in cross-sectional area.\\\\ The frictional losses $\Delta p_v$ in a diffuser are given by: \begin{align} \Delta p_v &= \frac{\zeta\rho v_1^2}{2}\\ \Delta p_{v,\rm ideal} &= \rho \frac{v_2^2-v_1^2}{2} \end{align} \end{theorybox} \vfill \phantom{} \end{multicols} \newpage \begin{multicols}{2} \setlength{\columnsep}{1pt} \begin{theorybox}{Pipe fittings} The diffuser efficiency $\eta_D$ according to Bernoulli: \begin{equation} \eta_D = \frac{p_2 - p_1}{\Delta p_B} = 1 - \zeta \frac{1}{1 - \left(\frac{A_1}{A_2}\right)^2} = \frac{c_p}{c_{p,\rm ideal}} \end{equation} The various coefficients are stated as: \begin{align} c_p &= \frac{2\left(p_2 - p_1\right)}{\rho v_1^2} = \eta_D \cdot c_{p,\rm ideal}\\ c_{p,\rm ideal} &= 1 - \left(\frac{A_1}{A_2}\right)^2\\ \zeta_1 &= c_{p,\rm ideal} - c_p \end{align} The opening angle of a diffuser can be calculated as: \begin{align} \tan(\theta) &= \frac{d_2 - d_1}{2L}\\ \varphi &= 2\theta \end{align} The optimal angle $\varphi_{\rm opt}$ is between 6-20 degrees. \subsubsection{Inlets} When a stationary fluid is introduced from a large container into a pipe, losses occur due to acceleration and the formation of separation bubbles. \begin{itemize} \item sharp edge: $0.45 < \zeta < 0.50$ \item broken edge: $\zeta = 0.20$ \end{itemize} \subsubsection{Outlets} For an outlet into a large basin, the entire kinetic energy is converted into static pressure loss, meaning $\zeta = 1$ can be assumed. \subsubsection{Valves and fittings} $\zeta$-values are specified by different manufacturer. \end{theorybox} \section{Linear momentum theorem} \begin{formula}{Linear momentum} \begin{equation} \vec{I} = m\cdot \vec{v} \left[Ns\right] \end{equation} \end{formula} \subsection{Linear momentum balance} \begin{theorybox}{Momentum flux} The change in motion is a change in linear momentum over time: \begin{equation} \vec{F}_{\rm res} = \frac{d\vec{I}}{dt} = \dot{\vec{I}} = \frac{d\left(m\cdot \vec{v}\right)}{dt} \end{equation} at constant mass: \begin{equation} \dot{\vec{I}} = m\cdot \vec{a} = \dot{m}\cdot \vec{v} \end{equation} \end{theorybox} \vfill \columnbreak \subsection{System of forces} \begin{theorybox}{Force balance} The sum of all external forces on a control volume is the difference of momentum flow: \begin{equation} \vec{F}_{\rm res} = \sum_{i} \vec{F}_i = \dot{\vec{I}}_{\rm out} - \dot{\vec{I}}_{\rm in} \vspace*{-0.3cm} \end{equation} expanded to: \begin{equation} \dot{\vec{I}}_{\rm out} - \dot{\vec{I}}_{\rm in} = \dot{m}\left(\vec{v}_2 - \vec{v}_1\right) = \rho\cdot \dot{V}\cdot \left(\vec{v}_2 - \vec{v}_1\right) \end{equation} where: \vspace*{-0.3cm} \begin{align} m_1 &= \rho_1\cdot \dot{V}_1\cdot \Delta t = \rho_1\cdot v_1\cdot A_1\cdot \Delta t \notag\\ m_2 &= \rho_2\cdot \dot{V}_2\cdot \Delta t = \rho_2\cdot v_2\cdot A_2\cdot \Delta t \\ \vec{I}_{\rm in} = \vec{I}_1 &= m_1\cdot \vec{v}_1 = \rho_1\cdot v_1\cdot A_1\cdot \Delta t\cdot \vec{v}_1 \notag \\ \vec{I}_{\rm out} = \vec{I}_2 &= m_2\cdot \vec{v}_2 = \rho_2\cdot v_2\cdot A_2\cdot \Delta t\cdot \vec{v}_2 \end{align} \subsubsection{Momentum as vector} \vspace*{-0.3cm} \begin{align} \dot{\vec{I}}_{xyz} = \left(\dot{I}_x \dot{I}_y \dot{I}_z\right) \notag \\ \dot{I} = \sqrt{\dot{I}_x^2 + \dot{I}_y^2 + \dot{I}_z^2} \end{align} The external forces can consist of pressure forces $F_P$, body forces (support forces) $F_B$, gravitational forces $F_G$, and frictional forces $F_F$: \begin{equation} \vec{F}_{\rm res} = \sum_{i} \vec{F}_i = \vec{F}_P + \vec{F}_B + \vec{F}_G + \vec{F}_F \end{equation} \end{theorybox} \subsection{Control volume} \begin{examplebox}{Linear momentum calculation steps} \begin{enumerate}[label=\Roman*] \item Step:\ \ Select a suitable \textbf{coordinate system} and draw it in a sketch of the flow problem; \item Step:\ \ Select \textbf{control volume} sensibly and draw it in the sketch. The balance boundary should be set so that the external forces on its surface are knwon; \item Step:\ \ Draw in the \textbf{forces} $\vec{F}_P, \vec{F}_B, \vec{F}_G, \vec{F}_F$ acting on the CV from the outside and calculate them from the known quantities. \item Step:\ \ Calculate the \textbf{linear momentum fluxes} at the outlet and inlet and insert them as the resulting force (eq. 72) \item Step:\ \ Dissolve the momentum balance equations according to the \textbf{sought quantity} or its components and calculate them. \item Step:\ \ If necessary, calculate the \textbf{magnitude} and the \textbf{direction} (eq. 75) \end{enumerate} \includegraphics[width=\textwidth]{media/CV1.png} \end{examplebox} \vfill \end{multicols} \newpage \begin{multicols}{2} \setlength{\columnsep}{1pt} \begin{examplebox}{Linear momentum calculation steps} \subsubsection{Plates} \begin{center} \includegraphics[width=0.8\textwidth]{media/platte_bewegt.png} \end{center} \begin{equation} F_{kx} = \dot{m}\cdot v = \rho A v^2 \end{equation} \end{examplebox} \subsection{Momentum on x-direction} \begin{theorybox}{Wall shear stress} The shear stress $\tau_w$ is the force per unit area acting on the pipe's walls: \begin{equation} \tau_w = \frac{dv}{dn}\cdot \eta \vspace*{-0.3cm} \end{equation} where: \begin{itemize} \item $dv$ is the velocity difference; \item $dn$ is the distance from the wall \end{itemize} \begin{center} \includegraphics[width=0.85\textwidth]{media/Wandreibung.png} \end{center} \begin{equation} \left|F_{K,x}\right| = \left|A\left(p_{\rm in} - p_{\rm out}\right)\right| = \left|\tau_w \cdot A \cdot l\right| \end{equation} \end{theorybox} \subsection{Pelton turbine} \begin{theorybox}{Pelton bucket} \begin{center} \includegraphics[width=.85\textwidth]{media/pelton.png} \end{center} \subsubsection{Velocities} \begin{itemize} \item {\color{red} $v_1$: absolute velocity} [m/s] \item {\color{blue} $u$: radial velocity} [m/s] \item {\color{darkgreen!80!black} $w_1$: relative velocity (turbine POV)} [m/s] \end{itemize} \begin{align} v_{\rm nozzle} &= \sqrt{2g\Delta h} = \sqrt{\frac{2\Delta p}{\rho}} \notag \\ w_1 = v_{\rm nozzle} - u &= \sqrt{\frac{2\Delta p}{\rho}} - D_{\rm wheel}\cdot \pi \cdot n_{\rm wheel} \\ u &= \frac{v_{\rm nozzle}}{2} \end{align} \end{theorybox} \vfill \columnbreak \begin{theorybox}{Pelton bucket} \subsubsection{Rotational speed} \begin{equation} k_u = \frac{u}{v_{\rm nozzle}} \end{equation} \subsubsection{Hydraulic power} \begin{equation} P_{\rm hyd} \approx \rho\cdot g\cdot H\cdot \dot{V} \approx \Delta p\cdot \dot{V} \left[W\right] \end{equation} \end{theorybox} \begin{formula}{Laminar pipe velocity (section 5)} \begin{equation} v(r) = \frac{\Delta p\cdot R^2}{4\eta \cdot l}\left(1-\left(\frac{r}{R}\right)^2\right) \end{equation} \end{formula} \subsection{Borda-Carnot diffuser} \begin{examplebox}{Borda-Carnot diffuser} \includegraphics[width=\textwidth]{media/bordaCarnot.png} The continuity equation (eq 12, 13, 14) can be applied for the pipe expansion. \subsubsection{Pressure difference} \vspace*{-0.3cm} \begin{align} \sum F_x &= p_1A_1 - p_2A_2 = \dot{m}\left(v_2-v_1\right) \\ p_1 - p_2 &= \rho \cdot v_2 \cdot \left(v_2 - v_1\right) = \rho \cdot v_2^2 \left(1-\frac{v_1}{v_2}\right) \notag \\ &= \rho \cdot v_2^2\cdot\left(1-\frac{A_1}{A_2}\right) = \rho\cdot v_1^2 \cdot \frac{A_1^2}{A_2^2}\cdot \left(1-\frac{A_2}{A_1}\right)\notag \end{align} \begin{equation} p_1 - p_2 = \rho \cdot v_1^2\cdot \frac{A_1}{A_2}\cdot \left(\frac{A_1}{A_2}-1\right) \end{equation} \subsubsection{Maximum pressure} The maximum possible pressure increase can be archieved with an area ratio of $A_1 / A_2 = 0.5$. Thus: \begin{equation} \left(p_2 - p_1\right)_{\rm max} = \frac{\rho\cdot v_1^2}{4} \end{equation} \subsubsection{Pressure loss in ideal diffusers} \begin{equation} \Delta p_{V,\rm id} = \frac{\rho}{2}\left(v_1 - v_2\right)^2 = \frac{\rho\cdot v_1^2}{2}\left(1-\frac{A_1^2}{A_2^2}\right) \end{equation} \subsubsection{Pressure loss in real diffusers} \begin{equation} \Delta p_V = \Delta p_{V,\rm id} - \zeta\frac{\rho \cdot v_m^2}{2} = \frac{\rho\cdot v_1^2}{2}\left(1-\frac{A_1^2}{A_2^2}-\zeta\right) \end{equation} \end{examplebox} \vfill \end{multicols} \newpage \begin{multicols}{2} \setlength{\columnsep}{1pt} \begin{examplebox}{Borda-Carnot diffuser} \subsubsection{Flow losses} \vspace{-0.5cm} \begin{align} \frac{p_1}{\rho} + \frac{v_1^2}{2} = \frac{p_2}{\rho} + \frac{v_2^2}{2} + e_V \notag \\ e_V = \frac{v_1^2}{2} \cdot \left(\frac{A_1}{A_2}-1\right)^2 = \frac{v_1^2}{2}\cdot \zeta \end{align} Hence: \begin{equation} \zeta = \left(\frac{A_1}{A_2}-1\right)^2 \end{equation} \end{examplebox} \subsection{Analyze of momentum equation} \begin{theorybox}{Momentum equation} for $A_2 > A_1 \Longrightarrow p_2 > p_1;\qquad 0 < \zeta < 1$\\[1ex] for $A_2 = A_1 \Longrightarrow p_2 = p_1;\qquad \zeta = 0$\\[1ex] for $A_2 \to \infty \Longrightarrow p_2 = p_1;\qquad \zeta = 1$\\[1ex] for $A_2 = 2A_1 \Longrightarrow p_2 - p_1$ becomes maximal\\[3ex] Assuming $r=A_2/A_1$, we know $\zeta = \left(1-r\right)^2:$\\[1ex] if $r = 0.5 \Longrightarrow \zeta = 0.5$\\[1ex] if $r = 0.25 \Longrightarrow \zeta = 0.5625$\\[1ex] if $r = 0.75 \Longrightarrow \zeta = 0.0625$ \end{theorybox} \section{Angular momentum theorem} \begin{theorybox}{Angular momentum equation} \subsection{Moment of inertia} Considering the moment of inertia as a scalar quantity of a point mass instead of a tensor: \begin{equation} J_{\rm PM} = r^2\cdot m = \int_m r^2\ dm \left[kg\ m^2\right] \end{equation} \subsubsection{Angular momentum $D$} The angular momentum $D$ of a mass $m$ is rotating around a point $O$ with an angular velocity $\omega$ is: \begin{equation} D = m\cdot v\cdot r = m\cdot r^2 \cdot \omega \left[Nm\cdot s\right] \end{equation} \subsection{Angular momentum flux balance} The sum of all ext. torques on a CV is equal to the difference of the in/out angular momentum flux: \vspace*{-0.3cm} \begin{align} \vec{M}_{\rm res} = \sum_i \vec{M}_i = \dot{\vec{D}}_{\rm out} - \dot{\vec{D}}_{\rm in}\\ \dot{\vec{D}} = \vec{r} \times \dot{\vec{I}} = \vec{r} \times \left(\dot{m}\cdot \vec{v}\right) \end{align} \subsubsection{Angular momentum as vector} As (eq. 75), the angular momentum is a vector. \end{theorybox} \vfill \columnbreak \subsection{Angular momentum application} \begin{examplebox}{Pelton turbine} \includegraphics[width=\textwidth]{media/peltonlaufrad_drall_en.png} \begin{enumerate}[label=\Roman*] \item Step:\ \ xy-coordinates and CV \item Step:\ \ Relevant forces $\vec{F}_P,\vec{F}_G,\vec{F}_F,\vec{F}_B$ \begin{equation} M_{\rm res,z} = M_{B,z} \end{equation} \item Step:\ \ Angular momentum flux calculations: \begin{equation} \dot{D}_{{\rm out},z} - \dot{D}_{{\rm in},z} = M_{B,z} = -r\cdot \dot{m} \cdot v_1 \end{equation} \end{enumerate} \subsubsection{Delivered power} \vspace*{-0.3cm} \begin{align} P&=\omega\cdot M_{B,z} = \underbrace{r\cdot \frac{v_1}{2}}_{r\cdot u}\cdot \underbrace{r\cdot\dot{m}\cdot v_1}_{M_{B,z}} \notag \\ &= r^2\cdot\dot{m}\cdot\frac{v_1^2}{2} = r^2\cdot \rho \cdot \frac{v_1^3}{2}\cdot A_{\rm jet} \end{align} \end{examplebox} \begin{examplebox}{Lawn sprinkler} \includegraphics[width=\textwidth]{media/rasensprenger_orig.png} \subsubsection{Tangential (flat) jet exit} \vspace*{-0.3cm} \begin{gather} \dot{\vec{D}}_{{\rm out},z} - \dot{\vec{D}}_{{\rm in},z} = M_{B,z} \notag \\ \dot{\vec{D}}_{{\rm out},z} = -2r\cdot \dot{m}\cdot v_1 = -2r\cdot \dot{m}\cdot \left(w_u - u\right)\\ \dot{\vec{D}}_{{\rm in},z} = 0 \end{gather} \subsubsection{Deflection $\alpha$ in plane, tilt $\beta$ out of plane} \vspace*{-0.3cm} \begin{gather} w_{xy} = \cos\beta w_1, \quad w_z = \sin\beta w_1 \\ w_u = \cos\alpha w_{xy} = \cos\alpha\cos\beta w_1 \quad v_u = w_u - u \end{gather} \end{examplebox} \end{multicols} \newpage \thispagestyle{empty} \includegraphics[width=\textwidth]{media/angular_formulas.png} \end{document}