\documentclass{article} \usepackage{Mathematics} \pdftitle{Mathematics 2A} % === TITLE === \title{\textbf{Mathematics 2A \\ HSLU, Semester 2}} \author{Matteo Frongillo} \date{} % === TEXT === \begin{document} \maketitle \tableofcontents \pagebreak \part{Differential Equations Theory} \section{Introduction} A \textbf{differential equation} is an equation in which derivatives of an unknown function appear. For example, consider the simple differential equation \figbox{$\dfrac{dH}{dG}=H$} \rem{This equation asserts that the instantaneous rate of change of \(H\) with respect to \(G\) equals \(H\) itself. Its general solution is \(H(G)=\mathcal{C}e^G\) with \(\mathcal{C}\) an arbitrary constant.} \section{Separation of Variables} For a separable differential equation of the form \[ \frac{dy}{dx}=f(x)\,g(y), \] we rewrite it as \[ \frac{dy}{g(y)}=f(x)\,dx. \] \figbox{$\displaystyle \int\frac{dy}{g(y)}=\int f(x)\,dx$} \rem{After integration, one typically obtains an implicit solution that can be solved (if possible) for \(y\).} \wrn{Ensure that \(g(y)\neq 0\) on the interval of interest.} \section{Linear Differential Equations} A first-order linear differential equation can be written in the standard form \[ y'+p(x)y=q(x). \] Its general solution is given by \[ y=y_h+y_p, \] where \(y_h\) is the general solution of the homogeneous part \[ y'+p(x)y=0, \] and \(y_p\) is any particular solution of the full inhomogeneous equation. \figbox{$\dm y_h=A\exp\left({-\int p(x)dx}\right)$} \rem{The principle of superposition applies to the homogeneous equation; that is, any linear combination of solutions is again a solution.} \section{Exponential Growth and Decay} Many natural processes obey the simple law \[ \frac{dP}{dt}=kP. \] Its general solution is \[ P(t)=P(0)e^{kt}. \] \figbox{$P(t)=P_0e^{kt}$} \rem{This model applies not only to population growth but also to radioactive decay (with \(k<0\)).} \section{Graphical Representation: Slope Fields} A slope field (or direction field) helps visualize the behavior of solutions of a differential equation by drawing, at selected points \((x,y)\), short line segments whose slope is given by the value of \(f(x,y)\) in \[ y'=f(x,y). \] For example, for the differential equation \[ y'=y, \] the slope at each point is simply the \(y\)-value. The following TikZ figure illustrates a portion of this slope field. \begin{center} \begin{tikzpicture}[scale=0.8] \draw[->] (-3,0) -- (3,0) node[right] {\(x\)}; \draw[->] (0,-2) -- (0,2) node[above] {\(y\)}; % Draw sample slope segments for y' = y \foreach \x in {-2,-1,...,2} { \foreach \y in {-1.5,-0.5,...,1.5} { \pgfmathsetmacro{\slope}{\y} \pgfmathsetmacro{\dx}{0.2} \pgfmathsetmacro{\dy}{\slope*0.2} \draw (\x-\dx,\y-\dy) -- (\x+\dx,\y+\dy); } } \end{tikzpicture} \end{center} \rem{For \(y'=y\), the slope at each point equals its \(y\)-coordinate. Thus, solution curves such as \(y=\mathcal{C}e^x\) naturally emerge from the field.} \part{Mathematical Formulary} \section{Lines and Linear Functions} \subsection{Slope and Equation of a Line} \figbox{$m=\displaystyle \frac{y_2-y_1}{x_2-x_1}$} \figbox{$y-y_1=m(x-x_1)$} \figbox{$y=mx+b$} \rem{These formulas describe the fundamental properties of straight lines in the Cartesian plane.} \section{Exponents and Logarithms} \subsection{Working with Exponents} \figbox{$a^x\cdot a^t=a^{x+t}$} \figbox{$\displaystyle \frac{a^x}{a^t}=a^{x-t}$} \figbox{$(a^x)^t=a^{xt}$} \subsection{Definition of the Natural Logarithm} \figbox{\(y=\ln x\Longleftrightarrow e^y=x\)} \rem{For instance, \(\ln 1=0\) because \(e^0=1\).} \subsection{Logarithmic Identities} \figbox{\(\ln(AB)=\ln A+\ln B\)} \figbox{\(\ln\left(\frac{A}{B}\right)=\ln A-\ln B\)} \figbox{\(\ln A^p=p\ln A\)} \section{Distances and Midpoint Formulas} \subsection{Distance Formula} \figbox{\(D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)} \subsection{Midpoint Formula} \figbox{\(\left(\frac{x_1+x_2}{2},\,\frac{y_1+y_2}{2}\right)\)} \section{Quadratic Equations} \figbox{\(ax^2+bx+c=0\quad\Rightarrow\quad x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)} \section{Factoring Special Polynomials} \figbox{\(x^2-y^2=(x+y)(x-y)\)} \figbox{\(x^3+y^3=(x+y)(x^2-xy+y^2)\)} \figbox{\(x^3-y^3=(x-y)(x^2+xy+y^2)\)} \section{Conic Sections} \subsection{Circles} \figbox{\((x-h)^2+(y-k)^2=r^2\)} \subsection{Ellipses} \figbox{\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)} \subsection{Hyperbolas} \figbox{\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\)} \rem{The asymptotes of a hyperbola are given by \(y=\pm\frac{b}{a}x\).} \section{Geometric Formulas} \subsection{Conversion Between Radians and Degrees} \figbox{\(\pi\text{ radians}=180^\circ\)} \subsection{Circle Geometry} \figbox{\(A=\pi r^2,\quad C=2\pi r\)} \subsection{Sector of a Circle} \figbox{\(A=\frac{1}{2}r^2\vartheta,\quad s=r\vartheta\) \(\vartheta\) in radians.} \subsection{Volumes and Surface Areas of Solids} \begin{itemize} \item Sphere: \(V=\frac{4}{3}\pi r^3,\quad A=4\pi r^2\). \item Cylinder: \(V=\pi r^2h\). \item Cone: \(V=\frac{1}{3}\pi r^2h\). \end{itemize} \section{Trigonometric Functions and Identities} \subsection{Definitions} For a right triangle with hypotenuse \(r\) and legs \(x\) and \(y\): \figbox{\(\sin\vartheta=\frac{y}{r},\quad \cos\vartheta=\frac{x}{r},\quad \tan\vartheta=\frac{y}{x}\)} \subsection{Fundamental Identity} \figbox{\(\sin^2\vartheta+\cos^2\vartheta=1\)} \subsection{Angle Sum and Difference Formulas} \figbox{\(\sin(A\pm B)=\sin A\cos B\pm \cos A\sin B\)} \figbox{\(\cos(A\pm B)=\cos A\cos B\mp \sin A\sin B\)} \subsection{Double Angle Formulas} \figbox{\(\sin(2A)=2\sin A\cos A\)} \figbox{\(\cos(2A)=2\cos^2A-1=1-2\sin^2A\)} \section{Binomial Expansions} The binomial expansion for \((x+y)^n\) is given by \figbox{\((x+y)^n=x^n+n\,x^{n-1}y+\frac{n(n-1)}{2!}x^{n-2}y^2+\cdots+y^n\)} \rem{For \((x-y)^n\), the signs alternate accordingly.} \section{Differentiation Rules} \begin{enumerate} \item \((f(x)\pm g(x))' = f'(x)\pm g'(x)\). \item \((k\,f(x))' = k\,f'(x)\). \item \((f(x)g(x))' = f'(x)g(x)+f(x)g'(x)\). \item \(\left(\frac{f(x)}{g(x)}\right)'=\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}\). \item \((f(g(x)))' = f'(g(x))\cdot g'(x)\). \item \(\frac{d}{dx}(x^n)=nx^{n-1}\). \item \(\frac{d}{dx}(e^x)=e^x\). \item \(\frac{d}{dx}(a^x)=a^x\ln a,\quad a>0\). \item \(\frac{d}{dx}(\ln x)=\frac{1}{x}\). \item \(\frac{d}{dx}(\sin x)=\cos x\). \item \(\frac{d}{dx}(\cos x)=-\sin x\). \item \(\frac{d}{dx}(\tan x)=\frac{1}{\cos^2 x}\). \item \(\frac{d}{dx}(\arcsin x)=\frac{1}{\sqrt{1-x^2}}\). \item \(\frac{d}{dx}(\arctan x)=\frac{1}{1+x^2}\). \end{enumerate} \section{Integration Rules} \begin{enumerate} \item \(\displaystyle \int (f(x)\pm g(x))\,dx=\int f(x)\,dx\pm\int g(x)\,dx\). \item \(\displaystyle \int k\,f(x)\,dx=k\int f(x)\,dx\). \item \(\displaystyle \int f(g(x))g'(x)\,dx=\int f(w)\,dw,\quad w=g(x)\). \item \(\displaystyle \int u(x)v'(x)\,dx = u(x)v(x)-\int u'(x)v(x)\,dx.\) \end{enumerate} \section{Taylor Series Expansions} The Taylor series of \(f(x)\) about \(x=a\) is \[ f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+\cdots. \] Important examples include: \begin{align*} e^x &= 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots,\\[1ex] \cos x &= 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\cdots,\\[1ex] \sin x &= x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots,\\[1ex] \frac{1}{1-x} &= 1+x+x^2+x^3+\cdots\quad(|x|<1),\\[1ex] (1+x)^p &= 1+px+\frac{p(p-1)}{2!}x^2+\frac{p(p-1)(p-2)}{3!}x^3+\cdots. \end{align*} \section{Complex Numbers and Euler's Formula} A complex number \(z\) is written as \[ z=x+yj,\quad x,y\in\mathbb{R}. \] Its magnitude is \[ |z|=\sqrt{x^2+y^2}, \] and its conjugate is \[ \bar{z}=x-yj. \] Euler's formula states that \[ e^{jt}=\cos t+j\sin t, \] so any complex number can be written in polar form as \[ z=re^{j\varphi},\quad r\ge0,\; -\pi<\varphi\le \pi. \] \end{document}