\documentclass{article} \usepackage{Mathematics} \pdftitle{Mathematics 3A} % === TITLE === \title{\textbf{Mathematics 3A \\ HSLU, Semester 3}} \author{Matteo Frongillo} \date{} % === TEXT === \begin{document} \maketitle \tableofcontents \pagebreak \part{Planes and surfaces in space} \section{Plane $\pi$ in space} Let $\pi$ denote the plane: \[s_x\in \pi, s_y\in\pi, s_z\in\pi\] \[\pi: ax+by+cz+d=0\qquad \] For $S_x\in\pi \Longrightarrow 1a+0b+0c+d = 0$, hence\\ $a+d=0$ For $S_y\in\pi \Longrightarrow 0a+2b+0c+d=0$, hence\\ $2b+d=0$ for $S_z\in\pi \Longrightarrow 0a+0b+3c+d=0$, hence\\ $3c+d=0$ \[ \begin{cases} a+d=0\\ 2b+d=0\\ 3c+d=0 \end{cases} \Longrightarrow \begin{cases} a=-d\\ 2b=-d\\ 3c=-d \end{cases} \] Case 1: \[d=0 \Longrightarrow a=0, b=0, c=0 \Longrightarrow \pi: 0=0 \Longrightarrow \text{NOT a plane!}\] Case 2: \[d\neq0 \Longrightarrow \pi:\frac{ax+by+cz+d}{d} = 0 \Longrightarrow \frac{a}{d}x + \frac{b}{d}y + \frac{c}{d}z + 1 = 0\] Hence: \[ \begin{cases} a=-d\\ 2b=-d\\ 3c=-d \end{cases} \Longrightarrow \begin{cases} \frac{a}{d} = -1\\ \frac{b}{d} = -\frac{1}{2}\\ \frac{c}{d} = -\frac{1}{3} \end{cases} \] Which leads to: \[\pi: -x-\frac{1}{2}y-\frac{1}{3}z + 1 = 0\] \rem{the equation of a plane is defined up to a multiplication by a real number different from 0} e.g.: the same planed is shared between those 3 equations\\ ex 1) \[z=0 \Longleftrightarrow 5z=0 \Longleftrightarrow -10z=0\] ex 2) \[-x-\frac{1}{2}y-\frac{1}{3}z + 1 = 0 \Longleftrightarrow 6x+3y+2z+6=0\] \newpage \section{Functions in two variables $x$ and $y$} Let us take $\pi:x^2-y^2=0$ as example. The plot would look like this: \begin{center} \begin{tikzpicture} \begin{axis}[view={30}{60}, axis lines=middle, domain=-10:10, y domain=-10:10, samples=41] \addplot3[surf] {x^2 - y^2}; \end{axis} \end{tikzpicture} \end{center} \subsection{Spheres} \section{Linear functions of two variables} We say that $z$ is a \textit{linear function} of $x$ and $y$, if there are constant $a,b$ and $d$ such that: \figbox{$\dm z = ax + by + d$} holds. Alternatively: if there are constant $A,B,C,D$, with $C \neq 0$, such that: \figbox{$\dm Ax + By + Cz + D = 0$} holds. Since $C \neq 0$, we can rearrange this equation into: \figbox{$\dm z = -\frac{Ax}{C} - \frac{By}{C} - \frac{D}{C}$} \newpage \section{Contour lines} \[ \begin{cases} z = f(x,y)\\ z = k \qquad k\in\mathbb{R} \end{cases} \] $z=k$ represents all the possible horizontal planes Ex: \[ \begin{cases} z = x^2 - y^2\\ z = k \end{cases} \Longrightarrow \begin{cases} k = x^2 - y^2\\ z = k \end{cases} \] \begin{center} \pgfplotsset{compat=1.18} \begin{tikzpicture} \begin{axis}[ view={45}{30}, xlabel={$x$}, ylabel={$y$}, zlabel={$z$}, domain=-2:2, y domain=-2:2, samples=50, colormap/viridis ] % Surface z = x^2 + y^2 \addplot3[surf, shader=interp] {x^2 + y^2}; % Contour circle at z = 3, i.e. x^2 + y^2 = 3 \addplot3[ domain=0:360, samples=100, thick, color=red ] ( {sqrt(3)*cos(x)}, {sqrt(3)*sin(x)}, {3} ); \end{axis} \end{tikzpicture} \end{center} All the planes with equation $z=k$ are parallel to the coordinate planes $z=0$. When $z=k=0$, the circle is reduced to a point, the origin. When $k<0$, the equation $x^2+y^2=k$ has no solution in $\mathbb{R}$. When $k>0$, the equation $x^2+y^2=k$ represents a circle with radius $\sqrt{k}$ centered at the origin. \section{Cylinders} A cylinder is a surface generated by all the lines parallel to a given line $d$ and passing through a given curve $\mathcal{C}$. % Add plot \subsection{Property} Whenever you have a polynomial equation of degree at least 2 with a missing variable, then you have a cylinder (up to few exceptions). Ex: \[ z = y^2 \Longrightarrow y^2 - z = 0 \] This is a cylinder with generatrix parallel to the $x$ axis and directrix the parabola $y^2 - z = 0$ in the $yz$ plane. \begin{center} \begin{tikzpicture} \begin{axis}[ view={55}{25}, xlabel={$x$}, ylabel={$y$}, zlabel={$z$}, domain=-3:3, y domain=-2:2, samples=25, samples y=25, shader=flat, colormap/viridis ] % Parabolic cylinder: z = y^2 (independent of x) \addplot3[surf] {y^2}; % Directrix in the yz-plane (x = 0): z = y^2 \addplot3[ domain=-2:2, samples=200, thick, color=red ] ({0},{x},{x^2}); \end{axis} \end{tikzpicture} \end{center} \newpage \part{Partial derivatives} For a multivariable function $f(x,y,...)$, the partial derivative to one variable measures the instantaneous rate of change of $f$ when that variable changes and the others are held constant: \figbox{$\dm \frac{\partial z}{\partial x} = f_x(x,y)$} If $z$ is a function of $x$ and $y$, we define: The rate of change of $z$ with respect to $x$, with $y$ fixed, at the point ($x,y$)=($a,b$) as \figbox{$\dm \frac{\partial z}{\partial x} \big|_{(x,y)=(a,b)} = \lim_{h\to0}\frac{Z\big|_{(x,y)=(a+h,b)} - Z \big|_{(x,y)=(a,b)}}{h}$} The rate of change of $z$ with respect to $y$, with $x$ fixed, at the point $(x,y)=(a,b)$ as \figbox{$\dm \frac{\partial z}{\partial x} \big|_{(x,y)=(a,b)} = \lim_{h\to0}\frac{Z\big|_{(x,y)=(a,b+h)} - Z \big|_{(x,y)=(a,b)}}{h}$} For the lectures, we will be using the formula with 2-steps difference ($\Delta z_a = (a+h,b)-(a-h,b)$): \figbox{$\dm \frac{\partial z}{\partial x} \big|_{(x,y)=(a,b)} = \frac{Z\big|_{(x,y)=(a+h,b)} - Z \big|_{(x,y)=(a-h,b)}}{2h}$\\\\ $\dm \frac{\partial z}{\partial y} \big|_{(x,y)=(a,b)} = \frac{Z\big|_{(x,y)=(a,b+h)} - Z \big|_{(x,y)=(a,b-h)}}{2h}$} \section{Local linearization} \subsection{Tangent plane of a function at point P} Let $f(x,y)$ be our function and $P(a,b)$ a point, $P \in f$: \figbox{$\dm f(x,y) \approx f(a,b) + \frac{\partial}{\partial x} f(a,b)(x-a) + \frac{\partial}{\partial y} f(a,b)(y-b)$} \section{Gradient} The gradient of a function $z=f(x,y)$ is defined by: \figbox{$\dm \text{grad } f = \nabla f = f_x\overrightarrow{e_x} + f_y\overrightarrow{e_y} = \binom{f_x}{f_y}$\\\\ where $\dm f_x = \frac{\partial f}{\partial x}$ and $\dm f_y = \frac{\partial f}{\partial y}$} \newpage \subsection{Geometrical properties of the gradient vector $\nabla$ in the plane} If $f$ is differentiable at the point $(a,b)$ and $\nabla f \neq \overrightarrow{0}$, then the following holds: $\mathbf{\nabla f(a,b)}$: \begin{itemize} \item is perpendicular to the contour line of $f$ through $(a,b)$ \item points in the direction of the maximum rate of change $f$ \end{itemize} \textbf{The length $\mathbf{\left\lVert\nabla f(a,b)\right\rVert}$ of the gradient vector is}: \begin{itemize} \item the maximum rate of change $f$ at this point \item large when the contour lines are close together \item small when the contour lines are far apart \end{itemize} \subsection{Gradient of a function of three variables} The gradient of a function $w = f(x,y,z)$ is defined by: \figbox{$\dm \text{grad } f = \nabla f = f_x\overrightarrow{e_x} + f_y\overrightarrow{e_y} + f_z\overrightarrow{e_z}= \begin{pmatrix} f_x\\f_y\\f_z\end{pmatrix}$\\[3ex] where $\dm f_x = \frac{\partial f}{\partial x}$, $\dm f_y = \frac{\partial f}{\partial y}$, and $\dm f_z = \frac{\partial f}{\partial z}$} \subsection{Second-order partial derivatives of $z = f(x,y)$} A function $z=f(x,y)$ has two first-order partial derivatives, $f_x$ and $f_y$, and four second-order partial derivatives: \figbox{ \begin{gather*} \hspace*{-0.75cm} 1.\quad \frac{\partial^2z}{\partial x^2} = f_{xx}(x,y)=(f_x)_x(x,y),\\\\ \hspace*{-0.75cm} 2.\quad \frac{\partial^2z}{\partial x \partial y} = f_{yx}(x,y)=(f_y)_x(x,y),\\\\ \hspace*{-0.75cm} 3.\quad \frac{\partial^2z}{\partial y \partial x} = f_{xy}(x,y)=(f_x)_y(x,y),\\\\ \hspace*{-0.75cm} 4.\quad \frac{\partial^2z}{\partial y^2} = f_{yy}(x,y)=(f_y)_y(x,y) \end{gather*} } Usually, parenthesis are omitted, writing directly $f_{xy}$ instead of $(f_x)_y$, and $\dfrac{\partial^2 z}{\partial y \partial x}$ instead of $\dfrac{\partial}{\partial y} \left(\dfrac{\partial z}{\partial x}\right)$. \subsection{Equality of mixed partial derivatives (Schwarz's Theorem)} If $f_{xy}$ and $f_{yx}$ are continuous at a point $(a,b)$ inside the domain, then: \figbox{$\dm f_{xy}(a,b) = f_{yx}(a,b)$} \newpage \section{Directional derivatives in the plane} \subsection[Directional derivative of f at P(a,b) in the direction of u] {Directional derivative of $f$ at $P(a,b)$ in the direction of $\overrightarrow{u}$} If $\overrightarrow{e_u} = \overrightarrow{u} = u_1\overrightarrow{e_x} + u_2\overrightarrow{e_y}$ is a unit vector $\left\lVert u \right\rVert = 1$, we define the directional derivative $\dfrac{\partial f}{\partial \overrightarrow{u}} = f_{\overrightarrow{u}}$ by \figbox{$\dm \frac{\partial f}{\partial \overrightarrow{u}}(a,b) = f_{\overrightarrow{u}}(a,b) = \lim_{h\to 0} \frac{f(a+hu_1, b+hu_2) - f(a,b)}{h}$} \subsection{Gradient and directional derivative} If $f$ is differentiable and $\overrightarrow{e_u} = u_1\overrightarrow{e_x} + u_2\overrightarrow{e_y}$ is the unit vector in the direction of $\overrightarrow{u}$, then: \figbox{$\dm \frac{\partial f}{\partial \overrightarrow{u}}(a,b) = f_{\overrightarrow{u}}(a,b) = f_x(a,b)u_1 + f_y(a,b)u_2 = \nabla f(a,b)\cdot\overrightarrow{e_u}$} \section{Critical points} \subsection{Discriminant} Let $(x_0,y_0)$ be a critical point. Furthermore, let \figbox{$\dm D(x_0,y_0) = f_{xx}(x_0,y_0)f_{yy}(x_0,y_0) - \big(f_{xy}(x_0,y_0)\big)^2$} Then the following holds: \begin{itemize} \item If $D>0$ and $f_{xx}>0$, then $f$ has a local minimum at $(x_0,y_0)$ \item If $D>0$ and $f_{xx}<0$, then $f$ has a local maximum at $(x_0,y_0)$ \item If $D<0$, then $f$ has a saddle point at $(x_0,y_0)$ \item If $D=0$, no conclusion can be made \end{itemize} \section{Constraints and Lagrange Multipliers} \subsection{Lagrange multiplier $\lambda$} The scalar $\lambda$ measures how sensitive the optimal value of $f$ is with respect to small changes in the constraint level $c$. Formally, \figbox{$\dm \lambda = \frac{\partial f^\ast}{\partial c}$} where $f^\ast$ denotes the optimal value of $f$. A positive $\lambda$ indicates that relaxing the constraint ($c$ larger) increases the optimal value of $f$. \subsection{Graphical representation} The optimization of $f(x,y)$ under the constraint $g(x,y)=c$ can be visualized as searching for points where a level curve of $f$ is tangent to the constraint curve. At an optimum, the gradients are parallel: \figbox{$\dm \nabla f(x,y) = \lambda\, \nabla g(x,y)$} \newpage \subsection{Lagrange function $\mathcal{L}$} When optimizing $f(x,y)$ under the constraint $g(x,y) = c$, the Lagrange function is used: \figbox{$\dm \mathcal{L}(x,y,\lambda) = f(x,y) - \lambda(g(x,y)-c)$} The partial derivatives must be calculated: \figbox{$\dm \frac{\partial\mathcal{L}}{\partial x} = \frac{\partial f}{\partial x} - \lambda\frac{\partial g}{\partial x}$\\\\ $\dm \frac{\partial\mathcal{L}}{\partial y} = \frac{\partial f}{\partial y} - \lambda\frac{\partial g}{\partial y}$\\\\ $\dm \frac{\partial\mathcal{L}}{\partial \lambda} = -\big(g(x,y)-c\big)$} The stationary points of $\mathcal{L}$ satisfy: \figbox{$\dm \frac{\partial\mathcal{L}}{\partial x}=0\\[2ex]\frac{\partial\mathcal{L}}{\partial y}=0\\[2ex]g(x,y)=c$} Solutions $(x,y,\lambda)$ of this system give the candidate extrema of $f$ under the constraint $g(x,y)=c$. \newpage \part{Integration of functions with multiple variables} \section{Domain of integration $\Omega$} Let $f:\Omega \subset \mathbb{R}^2 \to R$. The set $\Omega$ is a region in the $xy$-plane over which the double integral \figbox{$\dm \iint_\Omega f(x,y)\ dx\ dy$} is taken. \section{Double integrals as iterated integrals} If the region $R$ is a rectangle with $a\leq x\leq b$ and $c\leq y\leq d$ and if $f$ is continuous in the region $R$, then the integral of $f$ over $R$ is equal to the iterated integral \figbox{$\dm \integral[R][][f][A] = \integral[y=c][d][\integral[x=a][b][f(x,y)][x]][y]$} The iterated integrals can also be written as \figbox{$\dm \integral[c][d][\integral[a][b][f(x,y)][x]][y]$} \subsection{Double integral over rectangles} \figbox{$\dm \integral[R][][f(x,y)][A] = \integral[c][d][\integral[a][b][f(x,y)][x]][y] = \integral[a][b][\integral[c][d][f(x,y)][y]][x]$} \subsection{Triangular regions} For the triangle with vertices $(0,0)$, $(1,0)$, $(0,1) \Longrightarrow\ 0\le y\le 1,\ 0\le x\le 1-y$: \figbox{$\dm \integral[y=0][1][\integral[x=0][1-y][f(x,y)][x]][y]$} Equivalently $0\le x\le 1,\ 0\le y\le 1-x$: \figbox{$\dm \integral[x=0][1][\integral[y=0][1-x][f(x,y)][y]][x]$} \newpage \subsection{Double integral over general regions} If the region $\Omega$ is not a rectangle, one must describe it using variable limits that follow the boundary of $\Omega$ \subsubsection{$x$-simple region} If the region $\Omega=\{(x,y)\mid a\le x\le b,\ \varphi_1(x)\le y\le \varphi_2(x)\}$, then \figbox{$\dm \integral[a][b][\integral[\varphi_1(x)][\varphi_2(x)][f(x,y)][y]][x]$} \subsubsection{$y$-simple region} If the region $\Omega=\{(x,y)\mid c\le y\le d,\ \psi_1(y)\le x\le \psi_2(y)\}$, then \figbox{$\dm \integral[c][d][\integral[\psi_1(y)][\psi_2(y)][f(x,y)][x]][y]$} \subsection{Double integrals in Polar coordiates} \subsubsection{Polar coordinates} Polar coordinates are defined as the coordinate change \figbox{$\dm f: \left(0,+\infty\right) \times (-\pi, \pi] \to \mathbb{R}^2 \difference \left\{(x,0)\in \mathbb{R}^2 \sht x \leq 0\right\}$} given by \figbox{$\dm f(r,\varphi) = \left(r\cos\varphi, r\sin\varphi\right)$} \subsubsection{Integration formula} To compute an integral in polar coordinates: \figbox{$\dm x=r\cos\varphi,\\ y=r\sin\varphi,\\ x^2+y^2=r^2$} and \figbox{$\dm dA = r\ \mathrm{d}\varphi\ \mathrm{d}r\quad \text{and}\quad dA=r\ \mathrm{d}r\ \mathrm{d}\varphi$} \section{Triple integrals as iterated integrals} If the region $V$ is a box with $a\leq x\leq b$, $c\leq y\leq d$, and $p\leq z\leq q$ and if $f$ is continuous in the region $V$, then the integral of $f$ over $V$ is equal to the iterated integral \figbox{$\dm \integral[W][][f][V] = \integral[p][q][\integral[c][d][\integral[a][b][f(x,y,z)][x]][y]][z]$} \subsection{Triple integrals in Cylindrical coordinates} \subsubsection{Cylindrical coordinates} Cylindrical coordinates are defined as the coordinate change \figbox{$\dm f: \left(0,+\infty\right) \times (-\pi, \pi] \times \mathbb{R} \to \mathbb{R}^3 \difference \left\{(x,0,z) \in \mathbb{R}^3 \sht x \leq 0\right\}$} given by \figbox{$\dm f(r, \varphi, z) = (r\cos\varphi, r\sin\varphi, z)$} \subsubsection{Integration formula} Each point $(x,y,z)$ in a 3D space is represented by $0\leq r < \infty,\ -\pi < \varphi \leq \pi$, and $-\infty < z <\infty$. The following relations hold: \figbox{$x=r\cos\varphi\\ y=r\sin\varphi\\ z=z\\ x^2+y^2=r^2$} and \figbox{$\mathrm{d}V = r\ \mathrm{d}r\ \mathrm{d}\varphi\ \mathrm{d}z$} \subsection{Changing the Order of Integration} To change the order of integration (e.g., swapping $dy\ dx$ to $dx\ dy$), one must redefine the boundaries of the region $\Omega$. This involves switching from a $y$-simple description to an $x$-simple description (or vice versa). \textbf{Method:} \begin{enumerate} \item Sketch the region $\Omega$ based on the original limits. \item Identify the boundary curves and rewrite their equations (e.g., convert $y=g(x)$ to $x=g^{-1}(y)$). \item Determine the new constant limits for the new outer variable. \item Determine the new variable limits for the new inner variable. \end{enumerate} \textbf{Example:} Consider the integral over the region bounded by $y=x^2$, $x=0$, and $y=1$: \figbox{$\dm \int_0^1 \int_{x^2}^1 f(x,y)\ dy\ dx$} To change the order to $dx\ dy$: \begin{itemize} \item The boundary $y=x^2$ becomes $x=\sqrt{y}$. \item The outer variable $y$ ranges from $0$ to $1$. \item For a fixed $y$, $x$ ranges from $0$ to $\sqrt{y}$. \end{itemize} \figbox{$\dm \int_0^1 \int_0^{\sqrt{y}} f(x,y)\ dx\ dy$} \end{document}